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Abstract—Youth anxiety disorders are highly prevalent and
associated with considerable concurrent functional impairments.
According to the State of the World’s Children report, 13% of
youth between 10 and 19 years old have a diagnosed mental
health disorder, 40% of which are anxious and depressive
disorders. In a typical longitudinal anxiety clinical study, many
explanatory variables are observed in a few patients. As patients
drop or miss appointments, collected data has a high missing rate
in explanatory and predicted variables. We suggest using machine
learning methods to improve understanding of treatments and
prediction of outcomes in such studies. We propose machine
learning-based imputation for understanding youth anxiety data
containing features with high missing rates. In the dataset used,
the missing rate of features is up to 80 %, making them impossible
to use in traditional analysis. Our results show that the proposed
iterative imputation with a bag of elastic net regressions imputes
missing data better than traditional imputation methods and
allow for the best prediction result. We investigate imputation and
prediction performance change when using jointly data from mul-
tiple studies, where each study has a different bias and missing
rate. Leveraging joint dataset allows for predicting the therapy
outcome in longitudinal studies with few patients. Additionally,
we can now impute or predict features and diagnoses not reported
by the clinical study. In conducted experiments, pooling data from
nine different studies resulted in 9.3% smaller imputation and
33% lower prediction errors, respectively. Results have higher
confidence than when studies are considered separately. We also
explored the performance of imputation and prediction in the
domain adaptation case of withdrawn patients, in which 50%
improvement is obtained when data from all studies are used to
impute and train the model.

Index Terms—anxiety, machine learning, imputation, outcome
prediction

I. INTRODUCTION

A recent Nature editorial [1] suggests that youth mental
health diagnoses have reached alarming levels, with one lon-
gitudinal study [2] suggesting that up to 36.7% of youth ages
9-13 (N=1420) will meet criteria for at least one psychiatric
disorder diagnosis by the age of 16. Within the range of youth
psychiatric disorders, youth anxiety disorders are the most
prevalent. For example, The National Comorbidity Survey of
US Adolescents [3] (N = 10,123) found that anxiety disorders
were the most common disorders observed among adolescents
ages 13-18, with an earlier age of onset (6 years) than
behavioral (11 years), mood (13 years) and substance use (15
years) disorders. Converging evidence was given in a separate
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study conducted by the World Health Organization [4], which
estimated that 3.6% of children aged 10-14 and 4.6% of
adolescents aged 15-19 experience an anxiety disorder. A
recent study [5] found that lifetime diagnoses of anxiety or
depression among children ages 6-17 increased from 5.4%
in 2003 to 8.4% in 2011-12. Beyond high frequency, youth
anxiety disorders are associated with considerable short- and
long-term functional impairments across multiple domains if
left untreated [6], [7].

Efficacious intervention is needed, and machine learning
can be a valuable tool to leverage in making evidence-based
treatment allocation decisions. However, before using machine
learning for implementing personalized treatments, there are
problems of data quality that must be addressed. Data from
youth anxiety treatment studies have multiple challenges mak-
ing them hard to analyze by clinical psychologists and off-the-
shelf statistical tools are deemed ineffective. To the best of our
knowledge, only one youth anxiety treatment study [8] uses a
machine learning model to predict treatment outcomes within
a small sample (N=124) and there is no analysis on quality
of used methods for this application. Therefore, this paper
examines how machine learning can be effectively utilized to
understand youth anxiety data and help in predicting prognosis
and assigning treatments.

We consider different challenges in data that emerge due
to the collection of multi-informant, randomized clinical trial
data, particularly in any effort to pool data across trials to
create harmonized datasets and due to longitudinal nature
of treatment. Firstly, single studies have more features than
patients, even after domain-based clinical feature selection. For
example, the most extensive anxiety treatment study to date [9]
observed 488 patients, but there are more than 1000 features
collected from each study. Secondly, as large questionnaire
batteries are collected from youth and their caregivers over
treatment and typically through a follow-up period, the amount
of patients who withdraw from treatment or do not fill in all
the information is significant. Therefore, patient data can be
missing a large fraction of features and predicted variables.
Thirdly, the protocol varies slightly across studies based on
study objectives. Fourthly, youth diagnostic comorbidity is the
norm, leading to multiple predictive variables. Finally, data is
influenced by recorded diagnoses, physicians who conducted
studies, and geographical regions. For example, ethnicity is
not recorded in many parts of the world, but it is commonly



documented in the US.

Percent of features missing for each patient
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Fig. 1. Percent of missing features per patient. Total features=108. Vertical
lines separate patients from different studies.

To address these challenges, we use data from nine youth
anxiety studies [10], [11], [12], [9], [13], [14], [15], [16] and
[17]. Figure 1 shows missing rate for each patient and it is
clearly influenced by study the data came from. Missing rate is
between 10% and 80%. There is no patient with fully observed
data.

The proposed methods and results of our analysis can be
applied to other longitudinal studies with high missing rate,
such as clinical trials, observational studies, and in future,
for personalized medical diagnostic and treatment using self-
observational, device-based, and other longitudinal data which
collection depends on patient’s promptness.

Our contributions are as follows:

1) Proposed and evaluated more complex machine
learning-based imputation methods than those used in
clinical psychology intervention studies.

2) Evaluated if data from multiple studies with different
biases and missing rates can help better imputation and
data understanding.

3) Examined the tool’s performance on domain transfer in
which target domain are patients who did not finish the
treatment.

II. METHODOLOGY

Methodology section describes proposed and leveraged
machine learning approaches and Experiments section gives
details on experimental settings and data. Please, see steps of
the implemented system in the Appendix .

Imputation methods. Modern imputation methods (MICE,
KI, FCKI, missForest) utilize an iterative process to achieve
better results. We propose the integration of iterative impu-
tation with machine learning models that are good for the
representation of small linear data, such as regression with
Ridge, Elastic Net, or Lasso regularization. We believe those
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techniques will take advantage of correlation among features
that DT and RF-based models (missForest) cannot capture. In
addition, we expect linear models to learn better representation
given that data is mainly numerical. On the other side, the
proposed model will not require fully observed samples like
MICE, KI, and FCKI do.

As regularized regression models work with fully imputed
data, we use initial mean imputation of unknown values. Then,
we propose two-level iterative imputation. The outer level
iteration step finishes after all features have been imputed
within that step. We consider an application where only a
few features (number of sessions, age, sex, study, and starting
condition) are fully observed. In contrast, some of the relevant
features have a missing rate of 80%. Therefore, the inner
iteration step always handles the feature with the lowest
missing rate among the features not handled in the current
outer iteration step.

In addition, as missForest is leveraging multiple decision
trees, we propose and evaluate using AdaBoost and Bagging
for feature imputation instead of simple regularized regression.
Therefore, we combine multiple elastic net (ET) models using
those boosting and bagging techniques to predict missing
values of the feature with the lowest missing rate that was
not already imputed in the current outer iteration step.

Youth anxiety data has missing values in explanatory (X)
and predicted (y) variables. Moreover, predicted variables
(diagnoses) are partially correlated as youth anxiety often
has associated comorbidities. Since the proposed algorithm
uses correlations among observed data, it, like all imputers,
underestimates the prediction error. To avoid leak between
X and y variables and reduce the error underestimation,
we propose training separate imputing models on X and y
variables.

Prediction methods. Once datasets are imputed, we trained
and tested diverse regression models as we hypothesized that
random forest used in [8] is not the best model for regression
task where most of the variables are numerical.

Joining multiple studies. Given many features, a small
number of samples, and a high percentage of missing values
in data from each study, we propose combining studies into a
single dataset to achieve better prediction confidence. Joined
dataset also allows us to predict diagnoses that were not
recorded or reported in a single study and to use and evaluate
methods for studies with too small a sample size. Since all the
studies have different biases and missing rates, we examine
when joining data has the most benefits.

Domain adaptation. Youth anxiety studies work with youth
over an extended period, leading to some participants dropping
out during the study, while a few come to the final evaluation.
It would be helpful to predict outcomes of dropout patients
as well. However, those data have even higher missing rate
and an additional bias. We argue that the proposed imputation
approach using joined data from multiple studies can improve
transfer learning prediction for the case of withdrawn patients.



III. EXPERIMENTS

The proposed and applicable state-of-the-art methods are
evaluated on data from youth anxiety studies.

A. Data

Data is integrated from studies done in the last 30 years by
different investigator teams in different countries (primarily in
the United States) but using a similar randomized controlled
trial approach and within samples of youth with primary
anxiety disorders. The main difference between studies is
the treatments they utilized (i.e., treatment protocol, session
number). Variables contain information answered in a survey.
Independent Evaluators (IEs) trained to reliability assessed
youth and caregiver diagnoses using a semi-structured di-
agnostic interview. Diagnoses were given a severity level
between 0-8, with higher numbers indicating greater severity.
Youth and their caregivers also filled out questionnaires to
assess basic demographic information. As original data from
studies contained too many variables, features for this study
are selected on the basis of domain knowledge from the
clinical psychology literature on treatment outcome predictor
and moderators.”

The severity of diagnoses before the treatment is a feature,
while the severity of diagnoses after treatment is a predicted
variable. Severity scores are considered to be numerical vari-
ables in this study. All categorical features (sex, race, ethnicity,
study, and starting condition) are fully observed. All imputed
features are numerical.

Table I shows the statistics of each study and the joined
dataset. It is noticeable that the number of features is often
similar to the number of samples and all except the most
extensive study have less than 140 patients. The missing rate
is above 40%, except in the biggest study, and seven out
of nine studies do not have data for at least one of the
predicted variables. These statistics do not include patients
who did not finish the treatment. Youth who dropped early
(n=202) were extracted and used to understand the properties
of transfer learning to withdrawn patients. Study 9 has an
immense missing rate (70%) and does not include any data
for predicted variables.

B. Baseline methods

Commonly used imputation methods are based on: 1)
statistics (mean, median, mode, random, MCMC); 2) nearest-
neighbors (KNN, FKM, KI, FCKI, MICE), 3) decision trees
and random forests (decision tree with a surrogate, missForest)
and 4) matrix decomposition techniques (soft imputation,
singular value decomposition (SVD)). We compare all of those
algorithms if they are applicable to the youth anxiety dataset.

Unfortunately, FKM, KI, FCKI, and MICE cannot be used
as they require fully observed samples. We use EM instead of
MCMC as literature considers those of the same performance.
Our missForest is named II with Extra Trees, and DT with a
surrogate is one iteration of II with DT.

2The list of features and software implementation can be found here:
https://github.com/marija-stanojevic/anxiety_ml.

Study Samples Features Predicted % missing
variables
S1 49 27 6 43%
S2 99 30 6 61%
S3 138 66 7 57%
S4 422 55 6 14%
S5 137 26 4 40%
S6 38 33 6 61%
S7 114 37 7 42%
S8 76 21 6 53%
S9 88 25 0 70%
Joined 1161 108 7 40%
TABLE 1

STATISTICAL OVERVIEW OF YOUTH ANXIETY DATA. DATA COMES FROM
STUDIES S1-S9 IN THE ORDER REFERENCED IN INTRODUCTION.

While our method proposes using iterative imputation with
regularized regression (ridge, elastic net, or lasso) and boosting
(AdaBoost) and bagging algorithms ensembled with those
regressions, we also test other regression options in integration
with iterative imputation: 1) linear regression; 2) Bayesian
ridge (BR) regression; 3) orthogonal matching pursuit (OMP);
4) Bayesian automatic relevance determination regression
(ARD); 5) KNN; 6) random forest regression (RF) and 7)
gradient boosting regression ensembled with decision trees
(GB).

To evaluate the influence of imputation on the prediction
task and to understand domain adaptation performance, we
use the same regression algorithms we use as part of iterative
imputation.

C. Experimental settings

Cleaning. Values 888 (if the measure was not included in
the trial) and 999 (other missing values) are replaced with
unknown values. Study code and treatment used in the study
are replaced with nine binary features for each study and eight
for each treatment type. Race variable is substituted with four
features representing “White”, “Black”, ”Asian”, and ”Other”
races. Patients who did not finish the treatment are separated
into another dataset for the domain adaptation task.

Imputation evaluation. To evaluate the proposed and state-
of-the-art imputation methods, 10% of non-missing values
in the dataset are randomly masked, and then imputation
algorithms are trained and evaluated on that dataset. Root
mean square error (RMSE) is calculated on masked data
by comparing original and imputed values (Full RMSE). To
understand method robustness, we repeated each imputation
on ten randomly masked dataset versions and reported mean
and standard deviation (STD). When imputation is learned and
performed on each study separately, the datasets are joined
before RMSE is calculated on all data at once (Avg study
RMSE). To understand imputation performance on each study
separately, we also calculate imputation RMSE for data from
each study separately. Imputation on study level is performed
on five randomly masked versions of data from the study, and
average and standard deviation of RMSE are reported.

Comparison of the imputated datasets on prediction
task. While some off-the-shelf imputing methods can only



apply imputation on the same dataset on which imputation
was trained, the proposed imputing methods can be trained
on the existing data and used for imputing unseen data. For
the prediction task, data of patients who finished treatment
is split into training, validation, and test with the ratio of
70:15:15. Then, the features in each of them are normalized.
The imputation model is trained on the training part of the
dataset, but the validation and test parts are just imputed. An
imputed training dataset is used to learn prediction models.
Prediction is evaluated using RMSE on non-imputed predicted
values of validation and test data to avoid underestimation
due to imputation of predicted variables. The RMSE is also
calculated on all predicted values in validation and test data
and compared to previously calculated RMSE to understand
the underestimation caused by imputation. In both cases,
RMSE is calculated on validation and test dataset and then
averaged to find RMSE confidence interval.

To evaluate prediction performance using each study sep-
arately, we would ideally split them in training, validation,
and testing and then use the same imputation and prediction
process as in the previous paragraph. However, many of the
datasets are too small and have a high missing rate. Therefore,
many validation and test datasets have more features than
samples and cannot be processed. Consequently, studies are
imputed only using joined dataset as described in the previous
paragraph. Then, imputed data is split into studies, and each
of the studies’ data is further split into training, validation, and
test. Finally, the prediction process described in the previous
paragraph is applied.

Domain adaptation task. Features of withdrawn patients
are normalized. Then, imputation RMSE mean and standard
deviation on withdrawn data is calculated using five randomly
masked then imputed versions of the dataset. Next, the imputer
is trained and evaluated on the same dataset. Additionally, the
imputation model trained on the original dataset is evaluated
on five randomly masked then imputed versions of the with-
drawn patients’ dataset. As in the original imputation step,
two independent imputing models are used for features and
predicted variables to avoid data leaks. Models trained on the
joined dataset and each study separately are used to predict
the withdrawn patients’ dataset values. Finally, the RMSE of
predicted values is calculated on non-imputed predicted values
and all predicted variables.

IV. RESULTS

RMSE values for imputation are calculated using the dif-
ference between actual and 10% of randomly masked values
in that dataset. RMSE values for prediction show how well
the seriousness of diagnoses is predicted. The intensity scale
is 0-8, where values 0-3 are milder, and 4-8 are severe.
Prediction RMSE values are reported only on the difference
between predicted and observed data, excluding imputations
of predicted variables.

Regression alg. Full RMSE Avg study RMSE
Mean 5.758 +0.188 5.683 + 3.916
e Median 583240210  5.965 +4.275
< KNN 4.665 £ 0.202 4.837 + 3.183
=) Soft Impute 4.990 £+ 0.188 5.298 + 2.834
Q SVD 6.527 + 0.377 9.104 £+ 5.293
= EM 7.960 £ 0.265 7.857 £+ 5.626
é II DT 5.633 4+ 0.085 6.131 4 3.489
II Extra Trees 3.984 +0.177 4.300 £ 2.038
II Linear 8.619 4+ 1.947 Not valid
II BR 4.056 £0.115 4.451 £+ 2.830
- II Ridge 4.284 + 0.398 5.882 4+ 3.251
3 1T Elastic Net 3.886 4+ 0.145 4.430 + 2.992
s 1I Lasso 3.935 +0.129 4.410 £+ 2.909
g I OMP 3.982 4+ 0.229 4.291 + 2.669
3 I ARD 7.225 + 3.549 8.863 + 9.864
é II KNN 4.206 £+ 0.188 4.716 £+ 2.829
e II RF 4.059 + 0.204 4.213 +2.183
A II GB 3.913+0.148 4.457 +£2.379
II Ada Boost 3.903 +0.180 4.476 + 3.322
II Bagging 3.809 £+ 0.181 4.195 + 2.869
TABLE II

IMPUTATION EVALUATED ON JOINED DATASET (FULL RMSE) AND
AVERAGE RMSE OF IMPUTATION ON SEPARATE STUDIES (AVG STUDY
RMSE)

A. Imputation results

Imputation is evaluated with RMSE on normalized dataset
when 1) joined dataset is imputed (Full RMSE) and 2) each
study is imputed separately, imputed studies are combined,
and RMSE is calculated (Avg study RMSE). Table II shows
results for both cases. The first part of the table gives baseline
methods, and the second part contains the proposed methods.

The best performing baseline method is II with extra trees,
which is a substitute to missForest, and that results align with
the literature. However, six proposed methods have better Full
RMSE than II with extra trees, and a bag of elastic nets
performs the best among all. II combined with boosting and
bagging of regularized regression models gives the two best
results. However, all six models outperforming II with extra
trees integrate II and regularized regression. Three proposed
methods have better average study RMSE, and a bag of elastic
nets also has the best result in this scenario.

B. Performance comparison between joined dataset and single
studies

Table II shows that using joined dataset increases RMSE
performance by 9.3% for the best imputation model (II with
a bag of elastic net regressions). However, more importantly,
it decreases the variability of imputation performance given
the randomly masked data. The best imputation method has
almost 16 times smaller STD when a joined dataset is used
compared to single studies’ imputation.

Iterative imputation with the linear model produces infinite
predictions due to a small percentage of known values within
a single study.

Table III shows RMSE of imputation per each study. Study
9 has high imputation RMSE, which is a consequence of the
high missing rate (70%) and no prediction variables in that
dataset. Because of this bias in the joined dataset, only three



Study Imp. RMSE Pred. RMSE Coverage
S1 2.885 + 0.842 1.029 £ 0.311 25%|1.7%
S2 3.983 £ 0.201 0.9034 +0.041  28%|4.1%
S3 3.229 £ 0.164 1.335 +£0.192 60%|16%
S4 3.018 £ 0.087 1.359 4+ 0.062 51%|39%
S5 2.805+0.188 1.529 + 0.030 24%|5.3%
S6 4.942 £+ 1.207 1.439 + 0.087 30%|2.1%
S7 1.594 +£0.120 1.618 £ 0.358 35%|8.0%
S8 3.661 £ 0.549 1.814 +0.475 19%]2.1%
S9 11.639 + 1.284  Impossible 23%]3.0%
TABLE III

PERFORMANCE OF IMPUTATION (BAGGING WITH ELASTICNET) AND
PREDICTION (BAYESIAN REGRESSION) ON IMPUTED DATA FOR EACH
STUDY.

studies’ datasets have worse imputation RMSE than the joined
dataset.

The coverage column shows the percent of columns that
the study observes compared to the joined dataset (left) and
the percent of missing values used to evaluate this study’s
imputation compared to the joined dataset (right). Coverage
shows high variability in known values (1.7% - 39%) and
covered features (19% - 60%) among the studies.

We can see that studies with high imputation RMSE (S2, S6,
S9) also have low confidence in that result which signalizes
that correlation among available data is not enough to impute
well. That is not surprising given that those three datasets have
a missing rate of 61%-70%.

In Figure 1 studies 1 and 2 look similar. However, statistics
in the Table I can explain the significantly higher RMSE on
S2 as a factor of its higher overall missing rate.

Since S4 is the most significant dataset from a single study,
imputation is very confident and with lower RMSE mean and
std. Therefore, if 55 features and 6 predicted variables that
dataset has were enough, training imputer and predictor using
only S4 instead of joined dataset would be a good choice.

When statistics from Tables I and III are combined, it
is clear that imputation confidence and RMSE are the most
influenced by the missing rate of the dataset and then by its
size and structure of missing values. Also, imputation RMSE
is not a great predictor of prediction RMSE, but imputation
confidence is highly correlated with prediction confidence.
While proposed imputation methods perform better than meth-
ods commonly used in literature, that advantage does not
guarantee better prediction on a particular small study with
a high missing percent.

Figure 2 shows that using joined dataset for training stabi-
lizes and improves imputation RMSE. Better prediction results
depend more on predictors than imputation methods when
imputations are chosen between our proposed predictors as
they are all performing well. Despite the predictor choice,
AdaBoost and bagging of elastic net regressors are performing
slightly better than the other imputation methods. Notice
that imputation with random forest and gradient boosting of
decision trees gives the worst prediction results.

While the best prediction models give acceptable RMSE,
prediction with the worst model trained on each study sepa-
rately is not meaningful given the scale of the predicted value.

Performance of the best, average, and worst predictor
over imputation methods evaluated on cross validation
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Fig. 2. RMSE of the best, an average of all predictors, and worst over different
imputation methods on test data. Prediction full lines describe prediction
made on a joined dataset, and prediction avg study lines show average
prediction RMSE when a different model is trained on each study.

The importance of the joined dataset is also evident as even
the worst prediction model on the joined dataset is better than
the best prediction model trained on single datasets.

Performance of the best, average, and worst predictor
over imputation methods evaluated on withdrawn data

61 —— OMP prediction full (best)
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Fig. 3. RMSE of the best, an average of all predictors, and the worst predictor
over different imputation methods on data from withdrawn patients. Lines have
the same meaning as in Figure 2.

C. Domain adaptation - withdrawn patients

To evaluate the domain adaptation properties of learned
predictors, we substitute the test dataset with the dataset of
withdrawn patients and record RMSE for each combination
of imputation and prediction methods used. Figure 3 shows
RMSE of prediction given different imputation methods. Per-
formance patterns on withdrawn patients are similar to the



test dataset, but prediction RMSE is worse for each type of
predictor. Although the best predictors are still linear, they are
not the same as in Figure 2. As hypothesized, the importance
of joined datasets is even more visible as all predictors trained
on single datasets give meaningless predictions with RMSE
higher than 4 points. Predictors achieve a 50% RMSE decrease
when using the joined dataset. While all the imputation models
perform similarly on the best predictors, bagging of elastic nets
has a small advantage in this case.

V. CONCLUSION

Youth anxiety is a rising problem for which treatment testing
studies are small, and data have significant challenges. We
start the process of building and evaluating helpful machine
learning tools for this task.

While the dataset’s missing rate, size, and structure of
missing values influence the ability to predict youth anxiety
well, we have shown that choosing the proposed iterative
imputation with the bagging of elastic net regressions gives
a slight advantage despite the chosen predictor. While chosen
predictors are integral, joining datasets as proposed is more
significant in successful prediction, especially when the target
variable is from a different domain, such as among withdrawn
patients.

There is a vast gap in data and method understanding and
software availability. Improving ML methods for analyzing
this kind of data would help many other psychological studies
and other longitudinal medical research studies with small
samples, many features, and a high missing rate.

While our paper gives the first directions on handling
youth anxiety data with machine learning, additional work
is required to achieve better results on this data. Also, more
can be done to understand how prediction and imputation
relate when the percentage of missing data is this high.
Finally, further collaboration between clinical psychologists
and machine learning scientists is required to collect more
data and create meaningful, better-performing, and widely
used tools. Discussion of potential ethical challenges around
imputing is a requisite for applying this machine learning
system into clinical settings. It is important to evaluate bias
that imputation induces on an individual level.
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