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Abstract

Recent studies work on connecting methylation values with cancer and identifying methylation sites or
corresponding DNA parts as tumor markers. This effort is based on statistical methods. Since the size
of methylation arrays is huge, current research rather works with groups of methylation features, which
has numerous disadvantages, including fact that it can’t understand role of single position.

This paper is analyzing each methylation site individually trying to select positions which can separate
in best  possible  way normal  and cancerous tissues in  different  cancers.  Generalized procedure for
positions selection is proposed that is robust to imbalance in classes and small datasets which are two
biggest problems of methylation datasets. This method performs better than state-of-the art method
having around 1% better results for large datasets and 5-30% better results for very small datasets. This
method doesn’t require both normal and cancerous samples from patient. Model doesn’t require any
assistance from experts.

Regularization  value  for  least  absolute  shrinkage  and selection  operator  (LASSO) is  shown to  be
dependent of sample size and not much related to the cancer type. By comparing LASSO and Elastic
net regression models, we show that using single methylation positions is better than using spatial
correlation between features for 27,000 array. 

Selected features are consistent despite changes in dataset and Cox analysis of time till death gives
better results than with features selected with state-of-the-art model. Some positions selected for one
cancer are good or spatially close to good features to distinguish other cancers as well. Future work will
focus more on understanding this experimental findings from medical point of view.

Introduction

Understanding causes and influences that increase chance of cancer development is crucial problem in
medicine, drug development, biology and genetics. Assessment is that 39.6% of men and women will
be diagnosed with cancer at some point during their lifetimes and only 66.5% of patients with cancer
have survived for more than 5 years. In 2017, it is estimated that 1,688,780 cases were diagnosed only
in United States [1], what is 0.05% of population. Most common cancers are breast cancer, lung and
bronchus cancer, prostate cancer, colon and rectum cancer, bladder and melanoma of the skin cancer.
Cancer mortality is higher among men than among women. Every year 0.02% population dies from
cancer in US only. Therefore, expenditures for cancer care in United States is expected to reach $156
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billion in 2020. [2]. This paper is focuses on finding of DNA methylation points which are strong
differentiators between cancerous and normal tissues.

DNA part in which cytosine is followed by guanine nucleotide in sequence along 5’ -> 3’ direction is
called CpG site.  CpG is  short  for  cytosine  -> phosphate -> guanine,  since in  this  case those two
nucleotides  are  separated with phosphate.  DNA regions  with high frequency of CpG positions  are
called CpG islands. 

Methylation is  process  of  adding 5-methyl  group to cytosine in  CpG site  and it  can change gene
expression. In mammals, 70-80% of cytosine of CpG sites are methylated. In humans, methylation at
the 5’ position of the cytosine pyrimidine ring at CpG position creates 5-methylcytosines. Methylation
beta value, also known as methylation level, is estimated as ratio of intensities of the methylated and
total  of  methylated  and  unmethylated  alleles.  It  can  be  in  range  [0,  1],  where  0  corresponds  to
unmethylated, and 1 means fully methylated.

As the most stable and experimentally accessible epigenetic mark, DNA methylation is of great interest
to the research community. It can be used to understand DNA level changes that are associated to
cancer  and also to  predict  risk of  cancer  or  survival  time for  persons with  cancer.  Methylation is
influenced by both genetics and environment, but it doesn’t change as fast as gene expression which
makes it very good and stable indicator of health change.

Objective of this paper is to create generalized procedure for selecting methylation CpG positions that
are associated with cancer  and predicting survival  time based on selected features.  To the best of
authors knowledge there is no generalized procedure that is applicable to all cancers.

Hypothesis 1:  It is possible to create generalized procedure for classifying samples as normal and
cancerous. This procedure gives better classification than state-of-the-art model [3].

Hypothesis 2: Created generalized procedure is able to extract CpG points consistently, regardless the
size or structure (number of cancerous/normal samples) of samples. Selected CpG points don’t depend
on samples.

Additionally, this paper wants to answer questions:

1. Is there an overlap in selected features between different common cancers?

2. Is it better to use methylation difference or methylation deviation difference or a mixture of
those to understand cancers?

3. Do CpG islands play role in selecting important CpG features?

Contributions of this paper are:

1. Generalized procedure is created that can be applied to any given cancer and it outperforms
state-of-the-art procedure which is not generalizable, i.e. requires human judgment and attention
for each cancer type.

2. Created model is robust to data size. It gives very good accuracy even for 20 samples (5-30%
better than state-of-the-art [3]), which is important because methylation extraction is expensive
process even for more common cancers. This can especially help with rare cancers.

3. This procedure is robust to imbalance of classes and performs well as long as there are samples
from both types of tissues and doesn’t require normal and cancerous tissue sample to be from
the same patient as in [3].
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4. Connection between regularization value and sample size is shown. Additionally, it’s shown that
there is no strong connection between regularization value and cancer type.

Related work 

Methylation extraction and analysis is very
complex  process,  but  it  is  often  used  in
understanding  diseases  and  cell  level
processes which are currently not explained,
such as obesity [4], cancer [5], [6], [7] and
neural system [8] functioning. Methylation
analysis  for  purpose  of  understanding and
explaining  cancer  is  very  often  used  and
there are many papers that explain protocols
for methylation values extraction ([9], [10],
[11]),  analysis  ([12],  [13],  [14])  or  the
whole process of working with methylation
data ([14]) as shown in Figure 1.

It  is  shown in  [15]  that  methylation  level
influences  gene  expression  in  animals.  As
mentioned  in  [16]  hypervariable  DNA
methylation is related with a lack of order in
gene expression in humans. Results of  [17]
explain  genetic  apparatus  for  variable
methylation  and  it  shows  that  high
variability of DNA methylation is related to
evolution. 

As written in [18] DNA methylation has possible influence on many diseases and biological processes,
therefore it is important to understand it better. Recent research is using DNA methylation as markers
for certain cancers or in diagnosis of other complex diseases and influence of drugs in treatment of
patients. Methylation is suitable for such analysis since it is influenced by all factors: genetics, behavior
and environment.

Many studies ([20], [21], [22]) discussed influence of genetics, behavior and environment (age, BMI)
on cancer development through analysis of DNA methylation level.

Studies showed that difference of mean level of DNA methylation can help to identify those features
that  influence  cancer  strongly  [23].  Models  developed based on this  discovery  were  successful  in
finding important features and understanding their influence on cancer development. Recent  papers
([16],  [17],  [19],  [24],  [25])  discussed  that  variance  of  DNA methylation  is  also  important  for
understanding disease. Results of [19] have shown that cancer risk markers can be identified better if
differential  variability  of DNA methylation is  used instead of  DNA methylation mean.  Study [26]
showed that features that have extraordinary high variance in normal tissue also have extraordinary
high variance in cancer tissue when comparing different DNA methylation features.

In previous experimental work on colon cancer samples (unpublished) it is found that features
selected using mean difference and deviation difference, as described in papers referenced above,
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are very different. Also, features highly depended on pre-processing of data and bounds that are
determined by experts and have to be determined separately for each cancer. 

Methodology  of  [3]  uses  better  models  comparing  to  above  described  methods,  however,  it  still
requires  experts  to  determine bounds in pre-processing step.  This  method consists  of  volcano plot
which shows log10(p-value) of t-test on y-axis and log2(fold change) on x-axis between cancer and
normal tissues of same patient. Experts select bounds based on volcano plot and features that are more
extreme  than  given  bounds  are  pre-selected.  Then,  method  applies  LASSO  regression  using  pre-
selected features to determine the most important features and it applies Cox analysis for time till death
using the LASSO selected features. Method [3] has to be separately developed for each cancer (since
each cancer would have different bounds). Additionally, model is not very robust to changes in data set
and can’t work with imbalanced datasets at all.

Methodology

Data are taken from GDC Data Portal (https://portal.gdc.cancer.gov) for four types of cancer: kidney
(1307 samples), breast (1234 samples), lung (1230 samples) and colorectal (735 samples) since those
cancers are represented with highest number of samples in the portal. All those cancers have subtypes
except  breast  cancer.  Study  [3]  considers  pairs  of  samples  of  methylation  between  normal  and
cancerous tissue for the same patient,  however  there are  only around 90,  70,  250 and 90 of such
patients in those data for each cancer respectively. 

This study aim is to work with imbalanced data and without requirement of having two types of tissues
from patient. Beside methylation arrays, clinical and biospecimen data are collected, even though they
are not present for all the samples. Clinical data contain demographic information (ethnicity, gender,
race, year of birth and year of death), diagnoses (age of diagnosis, days from birth, days to death, days
from last follow up, last known disease status, classification of tumor, alcohol intensity, ICD code,
tumor grade, tumor stage and vital status) and exposure (alcohol history, BMI, cigarets per day, height,
weigh, years smoked). Biospecimen data contain information about sample type, tumor code and days
to collection. Clinical and biospecimen data have high percentage of missing data, so selected featuers
will be used mainly for interpretation of results in this work.

Unfortunately,  data  taken  from  GDC  program  is  not  ready  for  analysis  and  it  requires  a  lot  of
preprocessing  since  methylation  measures  come  from  different  laboratories  and  projects.  Old
methylation measures were able to extract 27,000 positions methylation, while newer methods extract
480,000 positions and they are not compatible, so first step in data preprocessing is to find overlap of
features which is around 25,000 positions. In such dataset some features are missing almost all the
data and have to be removed. Final dataset contains around 23,500 features. Other features that have
missing data usually have around 1% of missing data, if any. Those missing data are imputed with
mean for that feature. Boundary for removal of the feature is 20% or more of missing values. 

Methylations are measured using small chips and then scaled to [0,1] interval. Study [14] and many
other suggest to account for chip bias when using data measured by multiple chips. Since chip effect
was experimentally confirmed in unpublished work by author,  in this  work  mean of the chip for
feature is subtracted from each methylation point, so new interval for methylation values is [-1, 1].

While methylation data is in .csv file and easy to extract, clinical and speciment data are encoded in
xml page. For the purpose of this project, most important features from those files are extracted. If
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variable is continuous, it is recorded as such (those variables are in R+). If variable is binary, given
values (usually strings) are transformed into numbers 0 and 1.  Missing data is encoded with -1 for
binary variables and with 10-8 in case of continues variables. Because of high percentage of missing
data, those features are mainly used for interpretation. Only variable used in all the analysis in this
work is type of sample (normal – 0 and cancerous – 1).

LASSO is a regression analysis method that performs both variable selection and regularization in 
order to enhance the prediction accuracy and interpretability of the statistical model it produces. It is 
used as part of the [3] procedure, however, idea of this project is to use LASSO only for selection of 
important features in order to avoid need for experts created boundaries and to be able to generalize the
approach to different cancers. Study [3] selects features based on mean difference, but ([16], [17], [19], 
[24], [25]) have shown that variance difference is also important differentiator between cancerous and 
normal tissues. By removing pre-selection based on mean we allow for features to be selected even if 
they have just different variance and they don’t have different mean.

LASSO regression is linear regression with l1-norm regularization which Lagrangian form is:

 , which can be rewritten as

In  this  paper,  different  values  of  lambda are  tested  with  LASSO model  and lambda  is  chosen  to

minimize  R-squared  score  of  LASSO fitted  model,  where  R-squared  is  defined  as  1−
u
v

where

u=∑i
( y i−predicted i)

2 and  u=∑i
( y i−mean( y))2 .  Additionally,  classification  accuracy  is

measured and reported and in most cases model that minimizes R-squared error was also maximizing

classification accuracy. Classification accuracy is 
# well classified samples
# all samples

.

Elastic net is regression method that uses both l1-norm and l2-norm regularizations. It is tested in here
as alternative methodology since LASSO regression is  very strict  in  selecting features.  If there is
group of highly correlated variables, LASSO will selected only one from them and ignore others.
Elastic  net  regression,  on the other  side,  have higher  tolerance for  correlated variables.  Therefore,
LASSO and Elastic net are compared here to understand if and how result will be influenced by spatial
dependency between methylation positions. Formula of Elastic net can be written as:

Once model is fitted, lambda values are chosen to minimize R-squared score described above. Also,
classification accuracy is measured.

In order to make full comparison, Ridge regression (regression with l2-norm regularization) is tested
using few runs to confirm hypothesis that its performance will be much worse than performance of
proposed model because it’s feature selection is very relaxed.

Lastly, LASSO regularization is tested on methylation data extended with the standard deviation
for  each  of  the  features.  This  methodology is  created  to  see  how additional  methylation  variance
features will influence classification and R-squared results.
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To ensure robustness of the methodology despite data imbalance and data size, methodology decides on
final  lambda value as average of lambdas in 10 runs. Each run is created by randomly splitting
original dataset into training (80%) and test (20%) data. Features that have coefficient larger than 0.05
are selected as important from one run, but final list of features consist of features that were selected in
at least 50% of runs. This procedure selects around 10 features per cancer. Without last step, each
cancer has around 20-30 selected features using LASSO regression. For smaller datasets (20 or 40
samples only) features coefficients are smaller since model is less sure about them, so all features with
coefficient bigger than 0.02 are selected and rest of the procedure is the same.

Once features are selected, Cox regression is used to model time to death for patients using their time
from last visit in case they are alive or time to death if they are dead. Both times are measured from the
point when cancer was detected up to event (last visit/death). People alive are given value 1 and people
dead are given value 0. Survival models have two purposes: 1) to understand how the risk of event
changes over time and 2) to understand how the event varies in response to explanatory variables. We
can model Cox proportional hazard as function at time t for subject i with explanatory variables Xi.

Likelihood and log-likelihood of event occurring at time Yi with subject i can be modeled with: 

The log-likelihood function can be maximized over parameter β by taking first derivative over β and
then calculating Hessian matrix of the partial log likelihood. 

Results and Discussion

To prove that accuracy of our model is better than state-of-the art methodology [3], first experiments
compare methodology from [3] with our methodology using LASSO and Elastic Net. State-of-the-art
method doesn’t mention averaging multiple runs or selected features that appear the best in multiple
runs. In order to give equal opportunities to the models, wrapper developed around LASSO for the
purpose of this paper is added as wrapper of state-of-the-art method. From the differences between min
and max values for 10 runs we can see that running experiment only once is bad practice (since results
can vary up to 7%) and also features selected in different runs can differ for around 10-20%.

When  comparing  LASSO  and  Elastic  net  models  (Table  1),  we  can  see  that  LASSO  always
outperforms Elastic net for up to 1% of classification accuracy and for up to 0.04 of R-squared value.
This shows that allowing for more flexibility in selecting features that would allow influence of spatial
correlation between features worsens the results. Also, When comparing lists of features selected by
those two models, we can see that there is around 80% match. 

Figures 2-5 show different methylation patterns for Kidney cancer, where y-axis is methylation value
and  x-axis is sample number.  Figure 2 shows example of feature selected by Elastic net and not
selected by LASSO. We can see  that  cancerous (red)  and normal (green) samples have similar
variations  and  means,  explained  by  flexibility  of  Elastic  net.  Figure  3 shows  example  of  feature
selected by LASSO and not selected by Elastic net model. We can see that both mean and variance are
very different between the cancerous and normal samples due to rigorous feature selection process of
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LASSO. Also,  list  of features selected by Elastic net in at  least  one run is broader 30-40 features
(comparing to 20-30 selected by LASSO), but amount of features that appeared in more than 50% of
runs is similar to LASSO. Data is also tested with Ridge regression with few runs, but performance
was  in  range  10-80% for classification  task, so  rest  of  the  experiments  are  canceled  and  it  is
confirmed that Ridge regression is not a solution for this problem.
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Figure 5: Kidney cancer: position cg04563996:
example of very different variabilities and 
similar means.

Figure 2: Kidney cancer: position cg04312209: 
selected by LASSO and not by Elastic net

Figure 4: Kidney cancer: position cg00363813: 
example of very different means

Figure 3: Kidney cancer: position cg06290096 
selected by Elastic net and not by LASSO

l1 l12 state-of-the-art[3]
avg max min avg max min avg max min

breast (classification) 94.797 97.561 91.870 94.756 97.967 93.089 94.186 95.934 91.463
breast (R-sq) 0.341 0.446 0.268 0.340 0.462 0.133 0.305 0.434 0.202

breast (lambda) 0.002 0.004 0.001
colorectal (classification) 95.009 97.945 93.835 94.073 96.599 89.116 94.049 97.945 91.095

colorectal (R-sq) 0.356 0.455 0.289 0.345 0.464 0.147 0.311 0.406 0.167
colorectal (lambda) 0.003 0.007 0.003

kidney (classification) 96.123 97.701 94.615 96.092 97.701 95.402 96.127 98.084 94.252
kidney (R-sq) 0.681 0.696 0.653 0.680 0.718 0.631 0.685 0.723 0.634

kidney (lambda) 0.003 0.006 0.002
lung (classification) 96.551 98.312 94.222 95.650 97.414 94.396 95.928 97.436 92.703

lung (R-sq) 0.492 0.563 0.325 0.452 0.502 0.389 0.460 0.524 0.386
lung (lambda) 0.002 0.003 0.002

Table 1: Comparison of different methods average, maximum and minimum classification 
accuracy and R-squares for four cancers: breast, colorectal, kidney and lung



Figures 4 shows example of methylation position in which difference between means of cancerous
(red) and normal (green) samples is large, while deviation seam to be similar. On the other side, Figure
5 shows example in which means are similar, but the deviation of cancerous points is much bigger. As
visible in those four figures,  if there is difference in variation of samples, cancerous tissues are
usually  more  various which  is  already  discussed  in  literature.  However,  in  literature,  usually
cancerous tissues are hypo-methylated, while in features selected by LASSO, we can see that
chance of them being hypo-methylated comparing to normal tissue is 50%.

Let’s compare LASSO as better model to the state-of-the-art model [3]. LASSO performs up to 1%
better than state-of-the-art model wrapped in robust procedure developed for this project, except for
kidney cancer where results are similar. Also, R-squared value is up to 0.04 better than state-of-the-art,
except for kidney where it’s similar. It is important to mention that LASSO and wrapped state-of-
the-art model select similar features, but LASSO is more rigorous and selects less features.

Additionally, wrapped state-of-the-art model isn’t generalizable because log10 of p-value and log2  of
fold change (FC) can differ a lot. So, it is required to plot volcano plot and ask expert to estimate
bounds for each cancer separately. Finding transferable bounds is attempted. Examples of best such
bounds are shown in  Figures 6 and 7, however while they work pretty well for breast cancer, they
work poorly for colorectal cancers, selecting too many features as extreme. Also, while log of p-value
for breast cancer is maximum 20, log of p-value of colorectal cancer is more than 200. Finally, state-of-
the art model requires pair of samples (normal-cancerous) from the same patient.

On the other side, from Table 1 we can see that average lambda values for different cancers are very
close to each other. Ranging from 0.0017 for lung cancer to 0.0032 for colorectal cancer. Experimental
results show that if the same lambda regularization (for example average of all cancers, 0.00267) is
applied for each of the cancers, both classification accuracy and R-squared score don’t change much.

This can be confirmed from R-squared curve given in Figure 8 for LASSO model for colorectal cancer.
Scale for x-axis is 1:2000, so actual values are 0.0005 till 0.0095. Whichever of those values we take as
long as it’s between 0.001 and 0.0095 we will get similar R-squared score (range of this score is (-inf,
1]). Based on this evidence we can confirm that lamda is transferable between the cancers as long
as sample size is the similar.
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Figure 6: Breast cancer volcano plot Figure 7: Colorectal cancer volcano plot



Next problem with methylation data is that it’s
hard to obtain a lot of samples, so in this project
we compared results of proposed methodology
with  state-of-the-art  [3]  wrapped  in  robust
procedure  developed  in  this  project  on  very
small  datasets.  Since  state-of-the-art  requires
patients with both samples, those are extracted
and from them 10, 20, 50 patients are randomly
selected  making  20,  40  and  100  samples  in
total.  For  proposed  methodology  20,  40  and
100  samples  are  randomly  selected  from
training data. This means that data selected for
proposed  methodology  has  same  balance  of
classes  as  original  data  and  doesn’t  require
balanced datasets.

In Table 2 we can see that proposed methodology performs 5-30% better in classification and has
R-square score up to 1.5 higher. Most importantly difference between 20 sample and 1000 sample
classification  accuracy  for  proposed  methodology  is  5-10% only  comparing  to  state-of-the-art  for
which difference is 15-35%. Selected features have smaller coefficients, so it is important to lower
boundary for selecting features for smaller dataset to 0.02 or even 0.01. Most importantly,  lambda
score is again similar between different cancers for the same size of the data which means that
same lambda can be used for different cancers, even for those cancers for which we don’t have huge
datasets to test on.

Lastly, once features are selected it is possible to do Cox analysis to predict time to live for patients.
Figures 9 and 10 show Cox prediction for the sample of 5 randomly chosen samples. Figure 9 shows
results of Cox analysis using features selected by LASSO and Figure 10 results of Cox analysis using
features selected by Elastic net. It is visible that better modeling or additional features are required to
get excellent results, but if LASSO performs better. It is able to understand differences between people,
while Cox-Elastic net has similar prediction for very different people. Also, LASSO accurately gives
higher probability of survival to the alive patient.
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Figure 8: Colorectal cancer R-square curve (LASSO)

small state-of-the-art [3] small l1
20 samples 40 samples 100 samples 20 samples 40 samples 100 samples
avg max avg max avg max avg max avg max avg max

breast (classification) 59.187 78.048 67.520 76.016 75.406 79.675 91.260 93.089 89.919 93.089 91.219 93.496
breast (R-sq) -1.360 -0.499 -1.310 -0.729 -0.988 -0.660 0.018 0.216 0.063 0.267 0.190 0.335

breast (lambda) 0.054 0.037 0.009 0.012 0.010 0.008
colorectal (classification) 60.775 74.829 70.655 79.452 71.101 78.231 89.154 95.238 88.140 91.837 90.709 95.238

colorectal (R-sq) -1.412 -0.764 -0.790 0.065 -0.886 -0.597 0.065 0.308 0.125 0.291 0.222 0.358
colorectal (lambda) 0.081 -0.092 0.017 0.020 0.018 0.008

kidney (classification) 80.381 89.655 83.045 88.077 83.662 88.462 85.278 92.720 88.719 92.720 93.829 96.935
kidney (R-sq) 0.358 0.522 0.446 0.573 0.452 0.539 0.428 0.609 0.500 0.558 0.620 0.673

kidney (lambda) 0.015 0.010 0.008 0.012 0.011 0.010
lung (classification) 73.933 90.717 78.689 84.322 81.306 85.897 90.335 94.390 91.247 94.421 92.451 96.507

lung (R-sq) -1.105 0.684 -0.688 -0.242 -0.768 -0.096 0.188 0.343 0.261 0.475 0.357 0.446

Table 2: Classification accuracy and R-square score results for small datasets for state-of-the-art and 
proposed methods



Conclusion and future work

Proposed method has highest accuracy comparing to the state-of-the-art or to models in which LASSO
regression is substituted with Elastic net or Ridge regressions. Also, when variance of each feature is
added to the dataset, performance drops for few percent, meaning that enforcing variance into data is
not beneficial for this model.

Regularizaton value depends mostly on sample size, but it can be used on different cancers as long as
sample size is same. This is beneficial for detecting rare cancers for which there is no way to execute
whole process and determine best regularization. There is indication that some selected features are
appearing in different cancers. Understanding and interpretation of this indication is focus of future
work.

It is shown that proposed method performs much better than state-of-the-art  on classifying smaller
datasets, which is beneficial for rare cancers or cancers subtypes. Also, it can help lowering costs of
cancer research since data that has to be collected is much smaller. Additionally, proposed procedure
doesn’t  require to have normal and cancerous tissue from same patient and it  can work even with
imbalanced data.

Beside interpretation of selected features and possible similarity between selected features between the
cancers, future work will focus on:

1. Adding clinical and biospecimen features to improve cox analysis. 

2. Numerical evaluation of Cox analysis performance. 

3. Development of more complex model to predict  time to live with missing data.  If  possible
model should optimize for Cox and Lasso regressions in the same time. 

4. Understanding which features contribute to Cox stratification.
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Figure 10: Kidney cancer Cox-Elastic net time to 
survival

Figure 9: Kidney cancer Cox-LASSO time to 
survival



References

[1] American Cancer Society (2017) Cancer Facts &amp; Figures, 
https://www.cancer.org/content/dam/cancer-org/research/cancer- facts-and- statistics/annual-cancer-
facts- and-figures/2017/cancer- facts-and- figures-2017.pdf (accessed on 03/30/2017)

[2] National Cancer Institute (NIH) (2017) Cancer Statistics, https://www.cancer.gov/about-
cancer/understanding/statistics (accessed on 03/30/2017)

[3] Wei, J. H., Haddad, A., Wu, K. J., Zhao, H. W., Kapur, P., Zhang, Z. L., ... &amp; Wang, B. (2015). 
A CpG-methylation- based assay to predict survival in clear cell renal cell carcinoma. Nature 
communications, 6, 8699.

[4] Xu X., Su S., Barnes V. A., De Miguel C., Pollock J., Ownby D., Shi H., Zhu H., Snieder H., Wang 
X. (2013), A genome-wide methylation study on obesity: differential variability and differential 
methylation, Epigenetics 8(5):522–533 

[5] Stirzaker C., Taberlay P. C., Statham A. L., Clark S. J. (2013), Mining cancer methylomes: 
prospects and challenges, Trends Genet, 30(2):75–84. 

[6] Wittenberger T., Sleigh S., Reisel D., Zikan M., Wahl B., Alunni-Fabbroni M., et al. (2014), DNA 
methylation markers for early detection of women’s cancer: promise and challenges, Epigenomics, 
6:311–27. 

[7] Caviglia G. P., Cabianca L., Fagoonee S. et al (2016), Colorectal cancer detection in an 
asymptomatic population: faecal immunochemical test for haemoglobin vs. faecal M2-type pyruvate 
kinase, Biochem Med (Zagreb) 26:114–120 

[8] Maze I. et al. (2014), Analytical tools and current challenges in the modern era of 
neuroepigenomics, Nat. Neurosci. 17, 1476–1490 

[9] Hebestreit K., Dugas M., Klein H. U. (2013), Detection of significantly differentially methylated 
regions in targeted bisulfite sequencing data, Bioinformatics, 29:1647–1653 

[10] Wilhelm-Benartzi C. S. et al. (2013), Review of processing and analysis methods for DNA 
methylation array data, Br. J. Cancer 109, 1394–1402 

[11] Kuan P. F., Song J., He S. (2017), methyIDMV: Simultaneous detection of differential DNA 
methylation and variability with confounder adjustment, Pacific Symposium on Biocomputing 

[12] Schubeler D. (2015), Function and information content of DNA methylation, Nature, 517 
(7534):321– 326 

[13] Plongthongkum N., Diep D. H. & Zhang, K. (2014), Advances in the profiling of DNA 
modifications: cytosine methylation and beyond, Nat. Rev. Genet. 15, 647–661 

[14] Vanderkraats N. D., Hiken J. F., Decker K. F. & Edwards, J. R. (2013), Discovering high-
resolution patterns of differential DNA methylation that correlate with gene expression changes, 
Nucleic Acids Res. 41, 6816–6827 

[15] Razin, A. & Cedar, H. (1991), DNA methylation and gene expression, Microbiol. Rev. 55, 451–
458 12 

[16] Issa J. P. (2011), Epigenetic variation and cellular Darwinism, Nat. Genet., 43, 724-726 

11



[17] Feinberg A. P. and Irizarry R. A. (2010), Stochastic epigenetic variation as a driving force of 
development, evolutionary adaptation and disease, Proc. Natl Acad. Sci. USA, 107, 1757-1765 

[18] Bock C. (2012), Analysing and interpreting DNA methylation data, Nature Rev. Genet. 13, 705-
719 

[19] Teschendorff A. E. and Widschwendter M. (2012), Differential variability improves the 
identification of cancer risk markers in DNA methylation studies profiling precursor cancer lesions, 
Bioinformatics, 28, 1487-1494 

[20] Kevin C. J. et al. (2014), Age-related DNA methylation in normal breast tissue and its relationship 
with invasive breast tumor methylation, Epigenetics, 9:2, 268-275 

[21] Videtic-Paska A. and Hudler P. (2015), Aberrant methylation patterns in cancer: a clinical view, 
Biochemia Medica, 25(2), 161-176 

[22] Teschendorff A. E. et al. (2016), DNA methylation outliers in normal breast tissue identify field 
defects that are enriched in cancer, Nat. Communication, 7:10478 

[23] Bengtsoon H. et al. (2001), Identifying differentially expressed genes in cDNA microarray 
experiments authors, Sci. Aging Knowl. Environm., 2001, vp8 

[24] Feinberg A. P. et al. (2010), Personalized epigenomic signatures that are stable over time and 
covary with body mass index, Sci. Transl. Med., 2, 49ra67 

[25] Jaffe A. E. et al. (2012), Significance analysis and statistical dissection of variably methylated 
regions, Biostatistics, 13, 166-178 

[26] Hansen K. D. et al. (2011), Increased methylation variation in epigenetic domains across cancer 
types, Nat. Genet., vol. 43 (pg. 768-775) 

12


