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Abstract 

Recent studies work on connecting methylation levels with cancer and identifying methylation sites or 

corresponding DNA parts as tumor markers. This effort is based on statistical methods. Since the size of 

methylation arrays is huge, current research rather works with groups of methylation features, which 

has numerous disadvantages, including fact that it can’t understand role of single position.  

This paper is analyzing each methylation site individually trying to understand how their variability is 

connected with health and cancerous tissues of colon cancer patients. For the first time in methylation 

analysis complex structure of network of patients is introduced. Feature selection in this paper is based 

on values of each methylation site and variability those sites have among patients.  

Based on similarity of selected methylation positions patients are connected in network, which is then 

clustered. Each cluster represents group of patients that have similar variabilities on selected 

methylation positions. Since there are no studies using network for solving this problem, null model is 

created to show that network representation and clustering is meaningful. 

As expected results present 2-4 clusters for each network we created and usually there is one smaller 

cluster that represents patients with common high methylation variability. It is easier to detect clusters 

for cancer tissues data. Feature selection influences patients’ clusters the most, while clustering 

methodology doesn’t play significant role. 

 

Introduction 

DNA part in which cytosine is followed by guanine nucleotide in sequence along 5’ -> 3’ direction is called 

CpG site. CpG is short for cytosine -> phosphate -> guanine, since in this case those two nucleotides are 

separated with phosphate. DNA regions with high frequency of CpG positions are called CpG islands.  

Methylation is process of adding 5-methyl group to cytosine in CpG site and it can change gene 

expression. In mammals, 70-80% of cytosine of CpG sites are methylated. In humans, methylation at the 

5’ position of the cytosine pyrimidine ring at CpG position creates 5-methylcytosines.  Methylation beta 

value, also known as methylation level, is estimated as ratio of intensities of the methylated and total of 

methylated and unmethylated alleles. It can be in range [0, 1], where 0 corresponds to unmethylated, 

and 1 means fully methylated.  

mailto:marija.stanojevic@temple.edu
mailto:zoran.obradovic@temple.edu


2 
 

Methylation extraction and analysis is 

very complex process, but it is often used 

in understanding diseases and cell level 

processes which are currently not 

explained, such as obesity [1], cancer [2], 

[3], [4] and neural system [5] functioning. 

Methylation analysis for purpose of 

understanding and explaining cancer is 

very often used and there are many 

papers that explain protocols for 

methylation values extraction ([11], [6], 

[11], [7], [8]), analysis ([9], [10], [12]) or 

the whole process of working with 

methylation data ([12], [12]). (Figure 1). 

However, all of these methodologies use 

only simple statistic for analysis and aim 

of this paper is to introduce complex 

structure of network into inspection of 

methylation variability in patients. 

This paper is doing further research of 

variability of DNA methylation levels in 

colon cancer patients using advanced data mining techniques and network science. In 2017, it is 

estimated that 1,688,780 cases will be diagnosed only in United States [21], what is 0.05% of population. 

Colorectal cancer is second leading cause for cancer-death and third most-diagnosed cancer in US [22]. 

Expenditures for cancer care in United States is expected to reach $156 billion in 2020 [23]. 

The research contributions are: 

1. Creation of methods for features selection that can extract features with high differentiability in 

DNA methylation. This problem was tacked in existing literature, but approaches used rather 

groups of CpG positions than single sites. 

2. Designing methodology for network representation and clustering of patients based on their 

methylation levels with evaluation of different approaches. 

3. Showing that patients can be meaningfully partitioned into groups based on their methylation 

level. 

 

Related work 

It is shown in [16] that methylation level influences gene expression in animals. As mentioned in [17] 

hypervariable DNA methylation is related with a lack of order in gene expression in humans. Results of 

Figure 1: Steps toward a successful epigenome-wide study 
(EWAS) in cancer 



3 
 

[18] explain genetic apparatus for variable methylation and it shows that high variability of DNA 

methylation is related to evolution.  

As written in [19] DNA methylation has possible influence on many diseases and biological processes, 

therefore it is important to understand it better. Recent research is using DNA methylation as markers 

for certain cancers or in diagnosis of other complex diseases and influence of drugs in treatment of 

patients. Methylation is suitable for such analysis since it is influenced by all factors: genetics, behavior 

and environment. Results of [20] have shown that cancer risk markers can be identified better if 

differential variability of DNA methylation is used instead of DNA methylation mean. 

Many studies ([24], [25], [26]) discussed influence of genetics, behavior and environment (age, BMI) on 

cancer development through analysis of DNA methylation level. Research in progress is trying to 

understand relation between risk for getting tumor and age using DNA methylation. That association is 

especially visible in colon cancer which is usually happening in older people, since average age of 

diagnosis is 72. 

Studies showed that difference of mean level of DNA methylation can help to identify those features 

that influence cancer strongly [27]. Models developed based on this discovery were successful in finding 

important features and understanding their influence on cancer development. 

Recent papers ([18], [28], [17], [29], [20]) discussed that variance of DNA methylation is also important 

for understanding disease. Study [30] showed that features that have extraordinary high variance in 

normal tissue also have extraordinary high variance in cancer tissue when comparing different DNA 

methylation features. 

 

Methodology 

To create meaningful network of patients and get clusters that would be made based on DNA 

methylation variability, method of five steps is created. All steps are described in subsections below. 

Networks are not used in explaining methylation values at patients till now, so there is no any 

methodology that can be used as reference. Because of this, in each step more different techniques are 

described, used and compared. 

Features selection 

Existing research is operating with mean and deviations of clusters of methylation values. Most recent 

methodologies for understanding DNA methylation and its relation to diseases, age or BMI was 

determined by analysis of differentially methylated regions (DMR) as mentioned in [31]. However, 

according to [31] there are numerous problems with grouping features, especially related to the fact 

that groups are not of equal size, so it is advised to use individual CpG site analysis which is case in this 

paper. 

Purpose of this research is to group patients based on the variability in methylation level in order to 

understand if there is group of patients for which certain CpG positions are highly deviant and to 

investigate further similarities between those patients and difference between them and other patients. 
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However, most of the methylation features don’t have high variability and all patients methylation values 

are close to the mean value. Therefore, it is important to select only those CpG sites that have high 

variability and/or elevated number of patients with very deviant methylation values for that position. 

Methylation features were selected if they satisfied condition using next methodologies: 

 Standard deviation higher than threshold (ST): thresholdstddev   

 Standard deviation over mean higher than threshold (SMT): 
threshold

mean

stddev


 

 Number of people whose absolute variation is higher than 2 standard deviations is above 

threshold (D): thresholdstddevdeviationabscount  )*2)((  

Using each of those techniques two different sets were created, one that contained around 10% of 

methylation features and another that contained around 0.5% of existing features. Percentages were 

chosen from previous research that initiated hypothesis for this research. That work experimented with 

total variance of patients if different number of features are selected. According to expected number of 

selected features closest threshold value was chosen with three decimal places. 

Correlation 

Two highest objectives for network are to keep as much information as possible from given methylation 

values and to understand if same patients are having high methylation variability for all methylation 

position. That is why correlation between patients’ methylation arrays (that contain selected features) 

is chosen to represent strength of link between two patients. 

Three different correlation methodologies are chosen, since as described in [32] their properties are 

similar but they measure different relations between variables. 

Pearson correlation YX

YX
YX

YXE






)])([(
,




, where YX  ,  are mean and YX  , are standard 

deviation values for X and Y variables, which in this case are methylation arrays for patient. Pearson 

correlation assumes normally distributed variables and correlation measures linear relation between 

two variables. However, in literature [33] methylation features are rather presented with beta-binomial 

model and values are in [0, 1] range and not in [-∞, ∞] as expected for normal distribution. Therefore, 

even though Pearson correlation is the most used one, it might not be the best solution for this problem. 

Spearman rank correlation )1(
1

2

2

,




nn

d i

YX




, where di is difference between ranks of Xi and Yi values 

(in this case methylation values between two people on the same site) and n is number of all methylation 

positions. There is no assumption about the distribution and this correlation measures monotonic 

relation between two variables. 
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Kendall tau rank correlation
)1(

2

1,






nn

nn dc
YX

, where nc is number of concordant (ordered in the same 

way), nd is number of discordant (ordered differently) values Xi and Yi on the same site and n is number 

of all methylation positions. It doesn’t have assumptions about the distribution. 

Network creation and normalization 

Network node is a patient and link is correlation value of methylation arrays (containing only selected 

features) of the two patients that are connected with that link. For later processing, it is required for 

weights of links to be in range [0, 1], however all correlation metrics give results in range [-1, 1], therefore 

normalization of correlation is done using two approaches: 

 )(corrabs , which gives high weights (≈1) to both direct and reverse strong correlations 

 2

1 corr

, which gives high weight (≈1) only to directly strongly correlated variables  

Even though correlation of patient with itself is 1, elements on diagonal of network adjacency matrix is 

set to 0, since patient is not connected to itself. 

Clustering 

Two different graph clustering methods are used on each combination of previously mentioned 

methodologies for feature selection, correlation and normalization of weights. 

Louvain clustering, as described in [35] is modularity based greedy algorithm with time complexity O (n 

log n). It starts by assigning each node to a separate cluster and then it evaluates gain in modularity if 

we move node i to cluster of its neighbor j. This is repeated for each i and j. Modularity gain is calculated 

using formula that changes little with change of i and j what makes this algorithm so fast
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This algorithm is used to determine optimal number of clusters for each network. 

Spectral clustering algorithm defined in [36] is used to determine network clusters. Provided input is 

affinity matrix (A), which is given as adjacency matrix of network and number of clusters (k) which is 

learned from Louvain clustering. Another option was to run spectral clustering on adjacency matrix for 

different number of clusters and optimize modularity function for each clusters number and then chose 

best optimization. However, that approach would give different number of clusters than Louvain 

algorithm, so it is not considered. 

Algorithm finds Laplacian matrix which is defined as
2/12/1  ADDL , where D is diagonal matrix whose 

elements represent degrees of nodes, then it finds k largest eigenvectors of L, orthogonal to each other 
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which create matrix X, which is then normalized to matrix Y. Finally, k-means algorithm is run on points, 

where each point is a row in Y matrix. Nodes of network are assigned to clusters based on results of k-

means algorithm. 

Both algorithms results are non-overlapping communities. 

Evaluation 

Evaluating graph clusters in unsupervised way is hard problem and there is no single best evaluation 

metric, so in this paper three often used and complementary evaluation techniques are utilized. All of 

them are described in [36] and short overview is given below. 

Modularity maximizes function
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 and gives output in range [-1, 1] where 

higher value is better. This is most complex optimization and often used for communities’ evaluation. 

However, it is also optimization function for Louvain algorithm, so Louvain algorithm will always perform 

better than spectral algorithm for this evaluation methodology. 

Conductance minimizes function ))(()( CiavgG   , where Ci are clusters,
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 is complement of Ci. Conductance 

measure ratio of sum of weights of links between clusters and sum of weights of links in cluster. It can 

be in range [0, ∞] and smaller results refer to better clustering. 

Coverage maximizes function )(
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)(cov

Gw

Cw
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for each vx and vy 

from cluster Ci, where G represents whole graph. Coverage measure ratio between weights in certain 

cluster and weights in the whole graph and final result is average of coverage values for each cluster. 

Range of results is [0, 1] and higher value means that clustering is better. 

 

Results 

Methodology is applied on methylation data from colon cancer, on both health and cancer tissues. All 

data preprocessing and methodologies implementation is done in python, using PyCharm Community 

Edition 2016 IDE on machine with 64GB RAM and Intel® Core™ i7-6700 CPU with 3.41 GHz speed. Whole 

procedure lasts few hours if it is run sequentially, but most of the work can be parallelized. Speed is not 

optimized because it was not objective of this project. 

Data preprocessing 

Data is taken from TCGA project for colon cancer patients using GDC Data Portal API. Beside methylation 

values, biospecimen and clinical supplement files were downloaded since they contain information 

about samples and patients from which methylation is measured, respectively. For the purpose of study 

it was important to work with both methylation values of health and cancer tissues for same patients. 
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Only 75 patients had data from health tissue, so for them data from health and cancer tissues are taken, 

making 150 tissues in total.  

Analysis is done separately on health and cancer tissue methylation data. Some of those patients 

contained multiple samples from cancer tissues, but only the first sampling is taken. Files contained 

485578 or 27579 methylation positions, so intersection is taken. In further preprocessing, methylation 

sites from sex chromosomes X and Y are removed as well as positions that had more than 20% of missing 

values. In most cases, all values at those position were missing. The remaining missing values are 

imputed with mean for that feature.  

After preprocessing, methylation arrays contained 22385 methylation sites per each patient sample. 

Biospecimen supplement data is used to understand which methylations belong to which samples and 

to which patients. Clinical data will be used to understand better who are the patients from the same 

community and how they differ from patients from other clusters. 

Null model 

In existing papers networks are never used for matching patients and understanding methylations, 

therefore, it is important to prove that network representation is meaningful. In that light, null model is 

created. Methylation values are randomly permuted for each site among patients and this data was used 

through the whole process of data selection, network creation and clustering. Networks created with 

random permutation are not meaningful as shown in Figure 2. Such networks usually give best 

modularity if they contain only one cluster (best for normalization 2

1 corr

) or if they contain high 

number of clusters (best for normalization )(corrabs ). When we compare clustering evaluation results 

between null model and health/cancer networks, null model always performs much worse and even the 

best results have inferior performance. 

 

Figure 2: Graphs and Hinton diagrams for null model with different normalization values 

General results 

Results are shown using Hinton diagram, which is plot of weights in adjacency matrix, while patients 

order is in respect with their cluster. First are shown patients from first cluster, then from second and so 

on. Inside the clusters patients are ordered by their initial id. Patients order is shown on x and y axis. 

Weights are displayed with different colors where color is dark blue for weights 0, green for weight 0.5 

and bright yellow for weight 1. In this representation squares around minor diagonal that are more 



8 
 

yellow than their surrounding represent clusters. Additionally, results are drawn as networks, where 

different node colors represent different clusters. Most of the networks pictures have “outlier” nodes 

which are consequence of drawing implementation in python and don’t have any meaning. 

 

Figure 3: Graphs and Hinton diagrams for health tissues with different normalization values 

Hinton graphs show that weights are bigger if we normalize correlations with 2

1 corr

than if we 

normalize them with )(corrabs in any case, including null models. As shown in Figure 3 and Figure 4 

clusters are meaningful and there are always one or two small clusters that present people with high 

deviations. Those are sometimes part of bigger clusters, as in example of Figure 4 a) right top corner.  

 

Figure 4: Graphs and Hinton diagrams for health tissues with different normalization values 

From figures and cluster evaluation results, it can be concluded that cancer methylation values are 

forming better clusters, weights are more substantial inside cancer tissue data clusters than inside the 

health tissue data clusters. 

In  

 

Table 1, results are represented for random, health and cancer data for each normalization type, because 

research showed that normalization type influences highly best clustering (columns). For each of 

abovementioned tissue and normalization types, data is shown for both clustering and all three 

evaluation methods (rows).  

A cell contain best value for certain clustering method, evaluation method, tissue type and normalization 

technique. The best value is chosen from results of three correlation techniques (Pearson, Spearman, 

Kendall), three different feature selection methodologies (ST, SMT, D) and two sizes of feature selection 
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sets (10% and 0.5%). For random data sometimes whole network is one cluster, in which case coverage 

is 1, which is the best possible value, but this clustering is not useful. 

 

Table 1: Best clustering results for random, health and cancer tissues clustered and measured with 
different techniques 

 

Discussion 

All results for health or cancer data divide network in 2-4 clusters as expected. Normalization 2

1 corr

gives always better clustering results for cancer tissues, while )(corrabs gives better results for health 

tissue, except if evaluated by coverage metric. This can be explained by the fact that cancer tissue 

methylation data is more deviant and it is therefore easier to preselect important features and 

correlation coefficients are higher and 2

1 corr

 normalization metric gives enough information for 

making good clusters. It also mean that for cancer sample methylation data, patients that are negatively 

correlated shouldn’t be grouped, but rather present different classes of people and might have different 

biological processes. On the other side, it looks like health tissues data is not enough deviant, so 
)(corrabs normalization metric helps patients that are strongly or reversely correlated to separate out. 

Clustering + 
Evaluation 
Method 

Null model 

)(corrabs  

Null model 

2

1 corr

 

Health tissue 

)(corrabs  

Health tissue 

2

1 corr

 

Cancer tissue 

)(corrabs  

Cancer tissue 

2

1 corr

 
Modularity 
(Louvain) 

0.099249, 
Pearson, 
0.5%, SMT 

0.005466 
Pearson, 
0.5%, D 

0.162885 
Kendall,  
0.5%, ST 

0.065379 
Pearson,  
10%, SMT 

0.204630 
Kendall, 
0.5%, D 

0.243234 
Spearman, 
0.5%, SMT 

Conductance 
(Louvain) 

4.745966 
Spearman, 
10%, D 

1.982202 
Pearson, 
0.5%, SMT 

1.393586 
Kendall, 
0.5%, SMT 

1.622324 
Pearson,  
10%, ST 

1.091775 
Kendall, 
10%, ST 

0.690853 
Spearman, 
0.5%, SMT 

Coverage 
(Louvain) 

0.348093 
Kendall, 
10%, D 

1 – single 
cluster 
Multiple 

0.642946 
Kendall, 
10%, D 

0.661576 
Spearman,  
10%, SMT 

0.694147 
Kendall,  
10%, ST 

0.743313 
Spearman, 
0.5%, SMT 

Modularity 
(Spectral) 

0.075320 
Pearson, 
0.5%, SMT 

0.004795 
Pearson, 
0.5%, D 

0.149705, 
Kendall, 
0.5%, ST 

0.064327 
Pearson,  
10%, SMT 

0.202401 
Kendall, 
0.5%, D 

0.243234 
Spearman, 
0.5%, SMT 

Conductance 
(Spectral) 

4.485229 
Kendall, 
10%, D 

1.978286 
Pearson, 
0.5%, ST 

1.393586 
Kendall, 
0.5%, SMT 

1.657455 
Pearson, 
10%, SMT 

1.057027 
Kendall, 
10%, ST 

0.690853 
Spearman, 
0.5%, SMT 

Coverage 
(Spectral) 

0.436908 
Pearson, 
0.5%, SMT 

1 – single 
cluster 
Multiple 

0.593260 
Kendall, 
0.5%, SMT 

0.744199 
Spearman, 
10%, SMT 

0.66919 
Spearman, 
10%, ST 

0.743313 
Spearman, 
0.5%, SMT 
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Those groups should be carefully examined from biological point of view in order to understand if all 

those people methylation values are deviant in same way. 

Feature selection method SMT (standard deviation over mean is higher than threshold) gives best results 

in 19 out of 36 cases which means that feature selection method is important for clustering. When it 

comes to number of features, choosing 0.5% or 10% of features seems to be best option in similar 

number of cases. 

Best values are most often created by Kendall correlation (11/24), than by Spearman correlation (9/24) 

and least often by Pearson correlation (4/24) if we exclude null model results. Inferior results of Pearson 

correlation can be explained by its requirement for normal distribution which is not distribution of 

methylation data. 

Both clustering methods give similar best results under all evaluation metrics, so we can conclude that 

network is robust and clustering method is the least important factor for getting good communities. It is 

important to say here that evaluation metrics are complemental, chosen to show different 

characteristics of resulting communities. 

Future work 

This is first research in which network is used to explain methylation values between people and to 

understand variability of methylation sites. Also, there is no good features selection method, so more 

research can be done in that area. 

There is place for more data analysis from perspective of graphs as well as for improvement of 

methodology. Concretely, it would be interesting to see clustering of patients based on their methylation 

values and compare results with network clustering results in order to understand if and how much 

network structure improves communities detection. 

Additionally, it would be interesting to get results using more different clustering and evaluation (such 

as NMI, RI, F and Silhouette) methodologies. 

Since features selection appears to have the highest influence on results, it is important to understand 

them in more details and to find even better techniques for their extraction. One option would be to 

apply PCA that would transfer n-dimensional methylation arrays into 2-dimensional arrays or t-SNE. This 

can help us understand better how many features should be selected and what features that are 

correlated. 

It is important to understand which features are commonly selected by different selection 

methodologies and what is the overlap of features and to further examine those methylation positions 

from biological point of view. Additionally, it is important to understand similarities between patients in 

same clusters with especial focus on smaller clusters of people and commonly highly deviant methylation 

values for this group. 

Different combinations of feature selections, number of selected features and correlation 

methodologies give best results in distinct cases. Combining all those options and finding best clustering 

using multiple graphs can be done using multi-graph clustering techniques.  
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