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Introduction

• Motivation: short-text classification models typically require
large labeled data

• Hypothesis 1: language models (LM) trained by
self-supervised learning fine-tuned by domain-specific data
require less labeled samples.

• Hypothesis 2: type and bias of additional data, used for
self-supervised learning, can also hurt the performance.

• Objectives:

(a) add news data to twitter posts on US elections and use them for
self-supervised learning to test hypothesis 1.

(b) test influence of news bias and additional data characteristics on
the performance.
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Model - ULMFiT

Universal language model fine-tuning for text classification (ULMFiT)1

1
J. Howard, S. Ruder. Universal language model fine-tuning for text classification. arXiv:1801.06146, 2018.
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Data

• Task is to classify twitter data (244,320 distinct posts) on US
midterm elections 2018 into one of the three categories: left,
right or neutral.

• To increase size of the corpus, additional data is used from six
news outlets (Table 1).

• News articles discuss US election 2016 with different bias.
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Experimental Settings

• General corpus: 103 million tokens from Wikipedia (WTM103)
for LM pre-training.

• Discriminative corpus: 10 combinations of news data (0.5 - 16
millions of words) with different biases used together with
244,320 twitts (∼ 4 millions of words) for LM fine-tuning.

• Classifier fine-tuning corpus: Mix1 or Mix2 data of 1,026 and
1526 labeled tweets.

• Validation and test data: Another 200+200 labeled tweets

• All experiments are repeated four times and average and
standard deviation (stdev) are reported.
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Results (1)

• When Mix 1 and Mix 2 results are compared, the model always
achieved better results for Mix 2 (Table 2) which has 54% of
neutral labels as compared to 31.5% of neutral labels in Mix 1.

• 80− 90% of predicted labels for Mix 2 are neutral.
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Results (2)

• The classification accuracy difference between Mix 1 and 2 is
the largest (11.9%) when ”left-biased news” is used.

• Using ”all news” data for fine-tuning achieves the best balance
among predicted labels for Mix 1. However, almost half of
predicted labels are wrong, so accuracy is low.

• The confusion matrices of experiments reveal that model
recognizes the right label easier than the left label in Mix 2.

• Different influence of biased news is notable. In Mix1 between
the best and the worst accuracy for different fine-tuning
settings is 9.5%. In Mix 2 this difference is 7.2%.

• Influence of the bias is not uniform and it depends on other text
properties (structure, jargon use, bias sensitivity).
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Conclusions

• High stdev (1.2− 5.3%) indicates the model’s sensitivity to the
number of labeled examples.

• Model is not robust to unbalanced datasets.

• Better results for Mix 2 are achieved because the algorithm
exaggerates the most frequent (neutral) label in the imbalanced
dataset (which contains 54% of examples of that class).

• Labeled Twitter data demonstrate diversity among posts with
label ”left”. They often talk about one particular issue and
have fewer hashtags to support the left political spectrum.

• Fine-tuning with biased news influences accuracy in both ways.

• The size of the fine-tuning data does not influence the results.
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Summary

• In some cases, UMLFiT barely learns anything indicating a need
for more labeled data and better fine-tuning dataset.

• All outlets try to appear neutral. Outlet bias labels come from
experts following the outlet through time. Bias of individual
articles can vary enormously.

• Using raw domain-data for fine-tuning can influence results in
unpredictable ways. Domain-data has to be carefully selected
and accommodated to the task.

• In the extension of this work, we want to understand how
performance depends on the size of labeled data and what are
the properties of good fine-tuning dataset for twitter
classification.
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