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The results of our experiments are displayed here. We find
e that augmenting hand-crafted features with deep-learned

Background

Depression and anxiety are two of the most common
psychiatric disorders globally. [1]. Although these disorders
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can negatively impact the quality of life for patients, early
diagnosis and intervention can significantly benefit outcomes

features improves our overall classification F1 score
compared to a baseline of hand-crafted features alone from

for the patient [2. 3]. Unfortunately. current approaches to ocessing - I i e -l a-t"éw 0.58 to 0.63 for depression and from 0.54 to 0.57 for anxiety.
diagnosing depression or anxiety through clinical f ] The results show that the inclusion of deep-learned features
assessment can pose a high-burden to patients seeking care h — enriches the representation by adding properties that are not

and can suffer from issues with subjectivity [4].
Speech-based biomarkers provide an interesting avenue for
the future of diagnosis or monitoring of depression and
anxiety. Patterns in the acoustic and linguistic content of
speech can be used to differentiate depressed/anxious and
non-depressed/anxious individuals [5].

Study Objective:

Present a framework for using
speech as a biomarker in the diagnosis
of depression and anxiety

3543 participants with 4209 unique samples were recruited
over Amazon Mechanical Turk (mTurk) completed speech
task assessments. These participants were prompted to
complete one-minute tasks where they were asked to
describe events or experiences. Audio recordings were
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Figure 1. Model architecture diagram of classification model, adapted from [6]

This architecture involves the

multi-modal fusion of the acoustic and

linguistic dimensions of speech. We

have two parallel branches that create
deep-learned representations of
speech using Wav2vec 2.0 and

RoBERTa.

These representations along with our
hand-crafted features form a
comprehensive representation of

speech which is used to predict the

binary classification label of any input
speech sample.
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Figure 2. Schematic representation
of how acoustic and linguistic
speech features are extracted from
raw audio.

Table 1. Anxiety and depression classification results

fully captured by the hand-crafted features, improving the
detection of depression and anxiety.

Classification of depression was better than anxiety which
could potentially be because of data imbalance. As only had
12.8% of GAD-7 scores as opposed to 25.3% of PHQ-8
scores in our dataset had scores above the soft diagnosis
threshold. Future studies with an expanded dataset and
more samples from higher severity-bands of depression and
anxiety can help validate this approach.

Key Findings:

1. Speech is a rich source of information that can be used
for the diagnosis of depression and anxiety

2. Crowd-sourcing is a valuable way of gathering samples
for biomarker development

3. Combining deep-learned and hand-crafted speech
features can improve the classification of depression and
anxiety
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