Predicting Grocery Sales

Marija Stanojevic

CIS Department, Temple University
Machine Learning Course, 7th December 2017

Problem definition and dataset

Kaggle competition: Corporación Favorita Grocery Sales Forecasting - Nigerian retailer
Predict \# items that will be bought in a store for date Growing retailer - new items and stores with time Training: $1^{\text {st }}$ January 2013-15 ${ }^{\text {th }}$ August 2017 Test: $16^{\text {th }}$ August 2013-30 ${ }^{\text {th }}$ August 2017
Different datasets extracted from database Prices of items are not given
Items have different sizes (kg, g, package, I, gallon, I)

Dataset

	date	type	locale	locale_name	description	transferred	$\overline{0}$	date	store_nbr transactions	
	3/2/2012	Holiday	Local	Manta	Fundacion de Manta	FALSE		1/1/2013	25	770
앙	4/1/2012	Holiday	Regional	Cotopaxi	Provincializacion de Cotopaxi	FALSE	O	1/2/2013	1	2111
O	4/12/2012	Holiday	Local	Cuenca	Fundacion de Cuenca	FALSE	¢	1/2/2013	2	2358
エ	4/14/2012	Holiday	Local	Libertad	Cantonizacion de Libertad	FALSE	\cdots	1/2/2013	3	3487
	4/21/2012	Holiday	Local	Riobamba	Cantonizacion de Riobamba	FALSE	는	1/2/2013	4	1922

Holiday sales
Oil price vs sales

Sales during year; each year one color

Sales vs item family

Sales vs state

Sales vs item class

Sales vs store type

CNN?

Methodology

* Mean-square loss
* Neural network with 2 and 3 fully connected layers Layers sizes 256, 128, 64 Dropout 0.5 after each Implemented RNN, but couldn't work with it in practice

Random
forest

Ensemble of best models

Labels
denormalization

Submit
Kaggle

Results

Model	Parameters	Error
Linear Regression	-	0.6797
Lasso Regression	L = any	0.8724
Ridge Regression	L => 1	0.6789
Ridge Regression	L => 20	0.6788
Gaussian SVR	L = 1, e < 0.02	0.4724
Gaussian SVR	L = 12, e < 0.02	0.5631

Model	Parameters	Error
Gaussian SVR	L $=1$, e >0.04	0.5844
Gaussian SVR	L = 12, e >0.04	0.6184
NN-2 layers	sgd, Ir: 0.001, 10 epochs, dp:0.5, relu	0.8668
NN-3 layers	sgd, Ir: 0.001, 10 epochs, dp:0.5, relu	0.8905
NN-2 layers	adam, Ir: 0.001, 10 epochs, dp:0.5, relu	0.4541
NN-3 layers	adam, Ir: 0.001, 10 epochs, dp:0.5, relu	0.4308

Conclusion

* In general NN performs best, then Gaussian SVR Items have different best models => ensembly Linear SVR is too slow
SGD is converging slowly, so ADAM optimizer is suitable Best I.r. $=0.001$, but doesn't change much
Adding additional layers doesn't change much
Big difference in accuracy for different items with NN Possible last layer activations: linear and relu

Thank you

Questions?

