Temporal Graph Regression via
Structure-Aware Intrinsic
Representation Learning

Chao Han., Xi Hang Cao, Marija Stanojevic, Mohamed Ghalwash,
Zoran Obradovic (Presenter)
SDM 2019




Attributed Graph

* Node i is composed of a target variable and a vector of attributes. {y;, x;}
* The edge between node i and node j (w;;) is determined by prior knowledge,

or similarity, or specific algorithmically calculations between nodes.

@ An example with 5 attributes in each node
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Temporal Graph Regression

Goal: Predict target variables y. at future time step
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Problems from the graph representation

 Number of variables in the input space: O(l * p * 1)
* Number of variables in the target space: O(l * p)

* Problems:
* Information contained in the data is redundant
* Model complexity is proportional to the number of variables

* Task: Find good representation of the temporal graph, such that the
temporal graph regression benefits from it

* Solution: Learn jointly latent feature space and latent target space by
considering the uniqueness of temporal graph.




Related work

* Many traditional approaches focused on learning low-dimensional
representation of the feature spaces, but not for temporal graph data.

* Some recent works applied dimension reduction techniques on the
target space. [PLST’ 12, CPLST’ |4, FAIE’ 14].

* None of them consider the representation learning on both spaces.




Structure-aware Graph Abstraction
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Structure-aware Graph Abstraction (Cont.)

¢* Temporal Smoothness: neighboring graphs on timeline are similar
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* Graph Structure Preservation: if two nodes are close then their
abstractions should also be similar

min tr(ATLA)

L is the Laplacian matrix of the similarity matrix IW.




Feature-Aware Target Space Learning

Maximum Predictability: maintain the
predictability of the latent target space s
m1n||YV B(g)U”F

B 3) is the concatenation of the latent feature
matrices in each snapshot. i.e., B(3) =

[B1(G:), -+, By ()]

Maximum Variance Projection: find a
projection such that the reconstruction
error is minimized
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Feature-Aware Target Embedding Learning

Bl e ka’l" t
S1 € R y1 € RP
(@) (73 [af2f2]=]1]
o Maximum g ) Maximum @ @ @ @
:_2/:' | 2| 1 | 2 | 1 | 2 | Predictability Variance
] A Projection A
{k
L t p
1 s1 [ Y.
B : S2 [ Y2 [
(b) By~ ko s3 Vs
B3 S e Rixt Y € Rixp
B c Rk: xXrxl Reduced Target Space Original Target Space

Reduced Feature Space

[=3,p=4,r=5,k=2andt=3



Intuition

Jointly discover the latent feature space and the latent target space.
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The joint learning problem
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Derivative-free block coordinate descent algorithm is proposed to solve it
All sub-problems have closed-form solution.




Datasets

~ Precipitation Forecasting

* Collected from 124 U.S. cities in 708 snapshots in monthly resolution.
(I=708 snapshots, p = 124 nodes, r = 9 features per node).

* Task: forecast precipitation in the next month at all locations.

* The similarity W is calculated as the inverse distance between two
locations.

* Wind Forecasting

* Collected from 7 wind farms with 4 features in each over 1080 days.
(I=1080 snapshots, p = 168 nodes and r = 4 features per node)

* Task: predict hourly wind power of all 7 farms in the next day.

* Similarity w;; is | if node i and node j are within the same hour or they
correspond to the same node of neighboring hours and 0 otherwise.




Results

* Compared the proposed representation learning method with four
methods: raw, CPLST, FalE, SAGA.

* Evaluated the quality embedding using two regression methods for
temporal graph regression: Lasso and SGCRFE

* Varied the training sizes from {20%, 40%, 60%, 80%, 100%} of all
training data and experimented on 8 windows for each training size.

* The embedding generated from the proposed method always lead to
better MSE across all experimental settings.



Efficiency brought by the graph abstraction
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Conclusion

* Task: find representation of the temporal graph, such that the
temporal graph regression is faster and more accurate

* Proposed a joint representation learning method for temporal graph
regression by utilizing the structure of temporal attributed graph

* Developed a block coordinate descent method for solving the
optimization problem. All sub-problems have closed-form solutions.

* Demonstrated the effectiveness of embedding by conducting
extensive experiments on two real-world datasets.
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