Multi-class Image Classification using Deep Convolutional Networks on extremely large dataset

Marija Stanojevic Ashis Chanda CIS Department, Temple University 5th December 2017

Content

- Our Problem
- Dataset
- Proposed Models
- Challenges
- Experimental Result
- Conclusions
- Future work

Problem Definition

- Kaggle competition: Cdiscount's Image Classification Challenge
- Classify user posted images into 5270 categories
- Challenges of dataset:
 - Huge amount of data and categories
 - Background clutter (objects blend into environment)
 - > Viewpoint and data scale variation
 - > Deformation
 - > Occlusion
 - Illumination conditions
- Deep learning models seem suitable

Category	# Labels		
Category1	49		
Category2	483		
Category3	5270		

Data sets Size		# products
Train data	58.2 GB	7,069,896
Test data	14.5 GB	1,768,182

Dataset: Product complexity

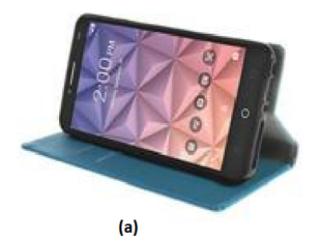


Figure 1. Deformation and scaling problem in product images

1.00

(b)

Figure 2. Occlusion problem in product images

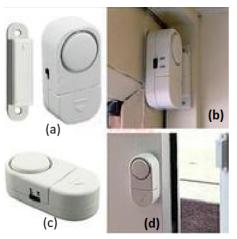


Figure 3. One item in different angles and background

Dataset: Categories

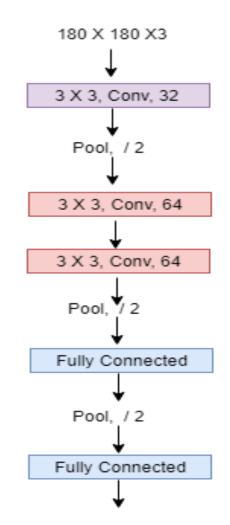
A sample list of product categories:

category_id	category_level1	category_level2	category_level3
1000010629	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	ADAPTATEUR DE CARTE SIM
1000010631	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	AMPLIFICATEUR D'APPEL TELEPHONIQUE
1000010633	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	AMPLIFICATEUR DE SIGNAL - ANTENNE
1000019772	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	BATTERIE EXTERNE - POWER BANK POUR
1000010635	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	BATTERIE TELEPHONE
1000010637	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	BIJOU DE TELEPHONE
1000010639	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	BOUCHON ANTI-POUSSIERE
1000019766	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	BRASSARD DE MARCHE POUR TELEPHONE
1000010641	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	CABLE TELEPHONE
1000010643	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	CARTE SIM
1000010645	TELEPHONIE - GPS	ACCESSOIRE TELEPHONE	BLUETOOTH

Models: CNN

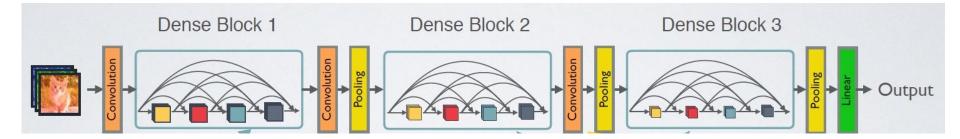
Our CNN

- > 3 Conv, 2 FC layers, 3 Pool layers
- > thinner layers
- > downsampling three times
- Tried to use for three types of categories



Models: DenseNet

- th layer has connection with all previous layers (1-1)
- Normally, each dense block contains 40, 100, 160 layers
- We used 3 blocks, 3 layers. Total connection: |x(1-1)|/2 = 15
- Each layer has BN, ReLU, Conv
- No transition layer (downsampling), but used dropout



Models: ResNet

- ✤ 34, 50, 101, 152 layers
- Residual block example
- Batch normalization, ReLu

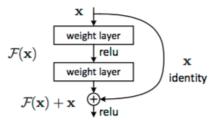
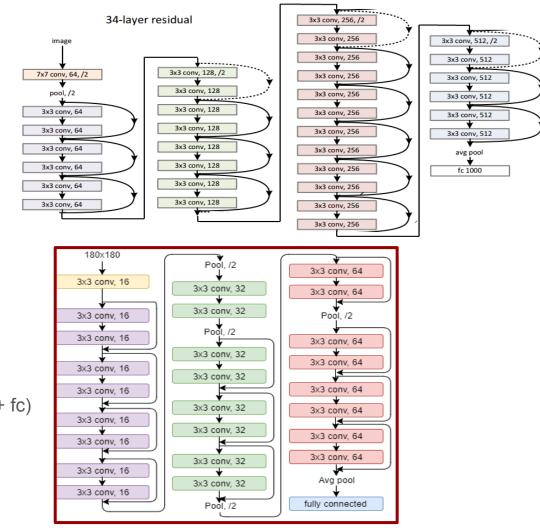


Figure 2. Residual learning: a building block.

Our residual network

- thinner layers (25 conv + 4 pool + fc)
- downsampling after each block
- > no bottleneck



Models: ResNext

- Uses residual block as bases
- Block width is divided in k parts which learn separately

eauivalent

256, 1x1, 4

+

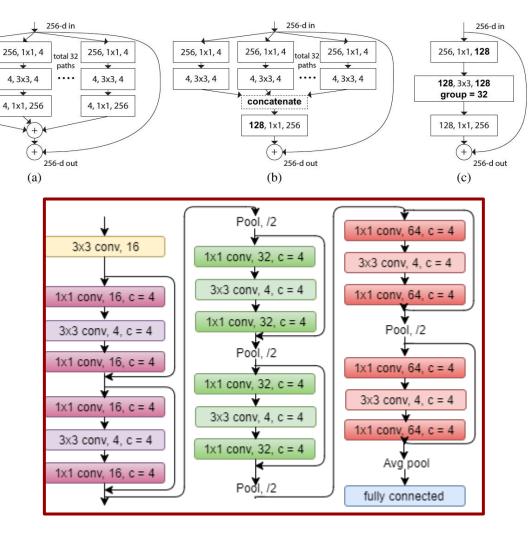
4, 3x3, 4

4, 1x1, 256

- Blocks are wider than in resNet
- Distinct cardinalities
- 29, 50 and 101 layers

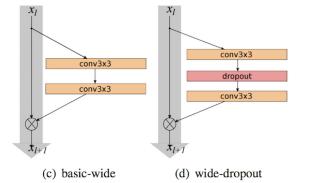
Our resNext:

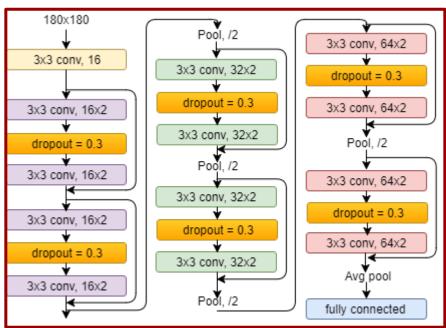
- > thinner layers
- downsampling after each block
- less layers (19 conv + 4 pool + fc)
- cardinality 32 always best results according to paper



Models: WideResNet

- Uses residual block as bases
- Block is k times wider (k=1, 2, 4, 8, 10, 12)
- Dropout beside batch normalization
- ✤ 16, 22, 28, 40 layers
- Our wideResNet:
 - k = 2 doesn't increase much number of parameters, but shows biggest improvement in original results
 - \succ dropout keep = 0.7 best in original results
 - less layers (13 conv + 4 pool + fc)





Challenges in dataset

- ✤ 5.6 TB after splitting data
- Train data (707 Batches) & Test data (177 Batches)
- Smaller batch: more reads and writes
- Bigger batch: memory error
- Each batch has 10,000 products ~ 20,000 images
- Cross-validation data: 707 products ~ 1500 images

Challenges in implementation

- Used owlsnesttwo high performance computing system
- GPU: NVIDIA Tesla P100 PCIe 12GB
- Only two jobs allowed in parallel
- Implemented with tensorflow and tflearn libraries in python
- Network
 - > Complexity in debugging
 - > **Bigger network**: memory error => tuning network
 - > Thinner and less layers
 - > Small number of epoch

Baseline (CNN) Result

CNN: (10 Epochs, 10 Batches)

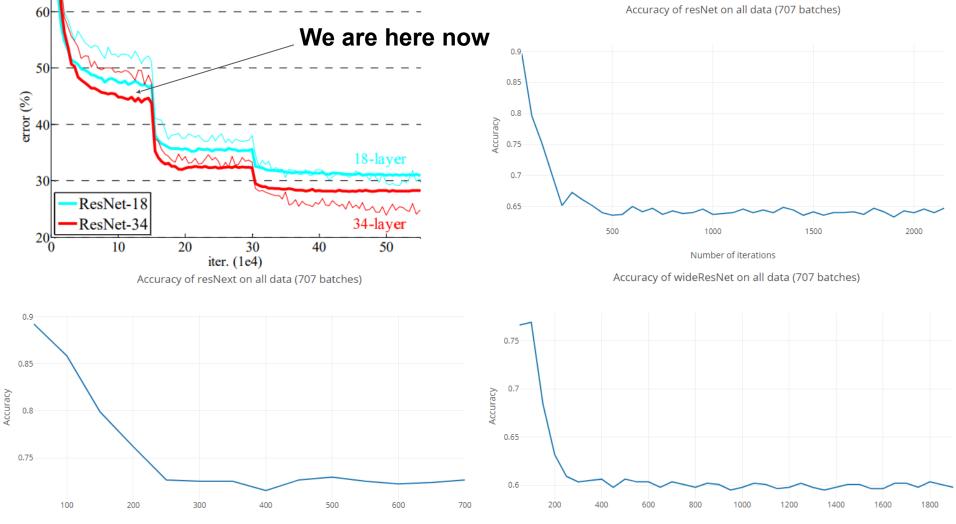
Label	# class	Accuracy	Error	Time
Category 1	49	52%	10.7	4 hours
Category 2	483	47%	11.68	5 hours
Category 3	5270	32%	4.89	11 hours

CNN: (50 Epochs, 50 Batches) (in progress)

Category 1 49	12% (1 epoch)	3.42	20 hours	
---------------	------------------	------	----------	--

Experimental Result (category 3)

Model	# Batch	# Epoch	Accuracy	Error	Time
DenseNet	50/707	1 (running)	4%	9.83	10 days
ResNet	50/707	10	34%	3.94489	5.69 hours
ResNext	50/707	10	28.9%	4.51031	16.8 hours
WideResNext	50/707	10	41.93%	3.53318	6.11 hours
ResNet	707/707	3 (running)	36.69%	3.84427	3.35 days
ResNext	707/707	1 (running)	28.47%	4.50394	9.90 days
WideResNext	707/707	2 (running)	40.51%	3.49804	3.60 days



Number of iterations

Number of iterations

Experimental results: Error in classifying

Mobile cover bag

Mobile Case

Laptop cover bag Case

Mobile film protector

Mobile

Conclusions and Future Work

- Baseline: CNN; Proposed: resNet, resNext, denseNet, wideResNet
- All proposed networks have similar number of parameters
- wideResNet performs the best
- resNext gave worst results and is 3 times slower than resNet
- DenseNet requires GPU with huge memory
- Requires a lot of time, huge memory and fast computational resources
- Number of epochs has to be 70+
- Future: Submit result to Kaggle competition

Thank you Questions?

Baseline (CNN) Result

CNN: (10 Epochs, 10 Batches)

Label	# class	Accuracy	Error	Time
Category 1	49	52%	10.7	4 hours
Category 2	483	47%	11.68	5 hours
Category 3	5270	32%	4.89	11 hours

CNN: (50 Epochs, 50 Batches) (in progress)

Category 1 49	12% (1 epoch)	3.42	20 hours	
---------------	------------------	------	----------	--

Model	# Batch	# Epoch	Accuracy	Error	Time / 10 epochs
CNN	50/707	10	32%	4.89	19 hours
DenseNet	50/707	10	16.74%	5.38	1.5 days
ResNet	50/707	10	34%	3.94489	5.69 hours
ResNext	50/707	10	28.9%	4.51031	16.8 hours
WideResNe t	50/707	10	41.93%	3.53318	6.11 hours
CNN	50/707	50	38.23%	4.056	19 hours
DenseNet	50/707	50	22.73%	4.04	1.5 days
ResNet	707/707	25 (running)	37.25%	3.99638	3.35 days
ResNext	707/707	3	28.75%	4.50174	9.90 days
WideResNe	707/707	20	41.64%	3.50708	3.60 days