
Multi-class Image Classification using
Deep Convolutional Networks on

extremely large dataset

Marija Stanojevic
Ashis Chanda

CIS Department, Temple University
5th December 2017

Content

❖ Our Problem
❖ Dataset
❖ Proposed Models
❖ Challenges
❖ Experimental Result
❖ Conclusions
❖ Future work

Problem Definition

❖ Kaggle competition: Cdiscount’s Image Classification Challenge
❖ Classify user posted images into 5270 categories
❖ Challenges of dataset:

➢ Huge amount of data and categories
➢ Background clutter (objects blend into environment)
➢ Viewpoint and data scale variation
➢ Deformation
➢ Occlusion
➢ Illumination conditions

❖ Deep learning models seem suitable Data sets Size # products

Train data 58.2 GB 7,069,896

Test data 14.5 GB 1,768,182

Category # Labels

Category1 49

Category2 483

Category3 5270

Dataset: Product complexity

Dataset: Categories

A sample list of product categories:

Models: CNN

❖ Our CNN
➢ 3 Conv, 2 FC layers, 3 Pool layers
➢ thinner layers
➢ downsampling three times

❖ Tried to use for three types of categories

❖ l th layer has connection with all previous layers (l -1)
❖ Normally, each dense block contains 40, 100, 160 layers
❖ We used 3 blocks, 3 layers. Total connection: l x (l -1) /2 = 15
❖ Each layer has BN, ReLU, Conv
❖ No transition layer (downsampling), but used dropout

Models: DenseNet

Models: ResNet

❖ 34, 50, 101, 152 layers
❖ Residual block example
❖ Batch normalization, ReLu

❖ Our residual network
➢ thinner layers (25 conv + 4 pool + fc)
➢ downsampling after each block
➢ no bottleneck

❖ Uses residual block as bases
❖ Block width is divided in k parts

which learn separately
❖ Blocks are wider than in resNet
❖ Distinct cardinalities
❖ 29, 50 and 101 layers
❖ Our resNext:

➢ thinner layers
➢ downsampling after each block
➢ less layers (19 conv + 4 pool + fc)
➢ cardinality 32 always - best

results according to paper

Models: ResNext

❖ Uses residual block as bases
❖ Block is k times wider (k=1, 2, 4, 8, 10, 12)
❖ Dropout beside batch normalization
❖ 16, 22, 28, 40 layers
❖ Our wideResNet:

➢ k = 2 - doesn’t increase much number
of parameters, but shows biggest
improvement in original results

➢ dropout keep = 0.7 - best in original results
➢ less layers (13 conv + 4 pool + fc)

Models: WideResNet

Challenges in dataset

❖ 5.6 TB after splitting data
❖ Train data (707 Batches) & Test data (177 Batches)
❖ Smaller batch: more reads and writes
❖ Bigger batch: memory error
❖ Each batch has 10,000 products ~ 20,000 images
❖ Cross-validation data: 707 products ~ 1500 images

Challenges in implementation

❖ Used owlsnesttwo high performance computing system
❖ GPU: NVIDIA Tesla P100 PCIe 12GB
❖ Only two jobs allowed in parallel
❖ Implemented with tensorflow and tflearn libraries in python
❖ Network

➢ Complexity in debugging
➢ Bigger network: memory error => tuning network
➢ Thinner and less layers
➢ Small number of epoch

Baseline (CNN) Result
❖ CNN: (10 Epochs, 10 Batches)

❖ CNN: (50 Epochs, 50 Batches) (in progress)

Label # class Accuracy Error Time

Category 1 49 52% 10.7 4 hours

Category 2 483 47% 11.68 5 hours

Category 3 5270 32% 4.89 11 hours

Category 1 49 12%
(1 epoch)

3.42 20 hours

Experimental Result (category 3)

Model # Batch # Epoch Accuracy Error Time

DenseNet 50/707 1 (running) 4% 9.83 10 days

ResNet 50/707 10 34% 3.94489 5.69 hours

ResNext 50/707 10 28.9% 4.51031 16.8 hours

WideResNext 50/707 10 41.93% 3.53318 6.11 hours

ResNet 707/707 3 (running) 36.69% 3.84427 3.35 days

ResNext 707/707 1 (running) 28.47% 4.50394 9.90 days

WideResNext 707/707 2 (running) 40.51% 3.49804 3.60 days

We are here now

Experimental results: Error in classifying

Mobile cover bag	 	 	 Mobile Case	 	 	 	 	
Mobile

Laptop cover bag	 	 Mobile film protector	 	 	 Mobile
Case

Conclusions and Future Work

❖ Baseline: CNN; Proposed: resNet, resNext, denseNet, wideResNet
❖ All proposed networks have similar number of parameters
❖ wideResNet performs the best
❖ resNext gave worst results and is 3 times slower than resNet
❖ DenseNet requires GPU with huge memory
❖ Requires a lot of time, huge memory and

fast computational resources
❖ Number of epochs has to be 70+
❖ Future: Submit result to Kaggle competition

Thank you
Questions?

Baseline (CNN) Result
❖ CNN: (10 Epochs, 10 Batches)

❖ CNN: (50 Epochs, 50 Batches) (in progress)

Label # class Accuracy Error Time

Category 1 49 52% 10.7 4 hours

Category 2 483 47% 11.68 5 hours

Category 3 5270 32% 4.89 11 hours

Category 1 49 12%
(1 epoch)

3.42 20 hours

Model # Batch # Epoch Accuracy Error Time / 10
epochs

CNN 50/707 10 32% 4.89 19 hours

DenseNet 50/707 10 16.74% 5.38 1.5 days

ResNet 50/707 10 34% 3.94489 5.69 hours

ResNext 50/707 10 28.9% 4.51031 16.8 hours

WideResNe
t

50/707 10 41.93% 3.53318 6.11 hours

CNN 50/707 50 38.23% 4.056 19 hours

DenseNet 50/707 50 22.73% 4.04 1.5 days

ResNet 707/707 25
(running)

37.25% 3.99638 3.35 days

ResNext 707/707 3 28.75% 4.50174 9.90 days

WideResNe
t

707/707 20
(running)

41.64% 3.50708 3.60 days

