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Problem Definition

❖ Kaggle competition: Cdiscount’s Image Classification Challenge 
❖ Classify user posted images into 5270 categories 
❖ Challenges of dataset:  

➢ Huge amount of data and categories  
➢ Background clutter (objects blend into environment) 
➢ Viewpoint and data scale variation 
➢ Deformation 
➢ Occlusion 
➢ Illumination conditions 

❖ Deep learning models seem suitable Data sets Size # products

Train data 58.2 GB 7,069,896

Test data 14.5 GB 1,768,182

Category # Labels

Category1 49

Category2 483

Category3 5270



Dataset: Product complexity



Dataset: Categories

A sample list of product categories:



Models: CNN 

❖ Our CNN 
➢ 3 Conv, 2 FC layers, 3 Pool layers  
➢ thinner layers 
➢ downsampling three times 

❖ Tried to use for three types of categories



❖ l th layer has connection with all previous layers (l -1) 
❖ Normally, each dense block contains 40, 100, 160 layers 
❖ We used 3 blocks, 3 layers.  Total connection: l x (l -1) /2 = 15 
❖ Each layer has BN, ReLU, Conv 
❖ No transition layer (downsampling), but used dropout 

Models: DenseNet



Models: ResNet

❖ 34, 50, 101, 152 layers 
❖ Residual block example 
❖ Batch normalization, ReLu 

❖ Our residual network 
➢ thinner layers (25 conv + 4 pool + fc) 
➢ downsampling after each block 
➢ no bottleneck



❖ Uses residual block as bases 
❖ Block width is divided in k parts                                                                                      

which learn separately 
❖ Blocks are wider than in resNet 
❖ Distinct cardinalities  
❖ 29, 50 and 101 layers 
❖ Our resNext: 

➢ thinner layers 
➢ downsampling after each block 
➢ less layers (19 conv + 4 pool + fc) 
➢ cardinality 32 always - best                                                                                                                  

results according to paper

Models: ResNext



❖ Uses residual block as bases 
❖ Block is k times wider (k=1, 2, 4, 8, 10, 12) 
❖ Dropout beside batch normalization 
❖ 16, 22, 28, 40 layers 
❖ Our wideResNet: 

➢ k = 2 - doesn’t increase much number                                                                                                                 
of parameters, but shows biggest                                                                                                 
improvement in original results 

➢ dropout keep = 0.7 - best in original results 
➢ less layers (13 conv + 4 pool + fc)

Models: WideResNet



Challenges in dataset

❖ 5.6 TB after splitting data 
❖ Train data (707 Batches) & Test data (177 Batches) 
❖ Smaller batch: more reads and writes 
❖ Bigger batch: memory error 
❖ Each batch has 10,000 products ~ 20,000 images 
❖ Cross-validation data: 707 products ~ 1500 images



Challenges in implementation

❖ Used owlsnesttwo high performance computing system 
❖ GPU: NVIDIA Tesla P100 PCIe 12GB 
❖ Only two jobs allowed in parallel 
❖ Implemented with tensorflow and tflearn libraries in python 
❖ Network 

➢ Complexity in debugging 
➢ Bigger network: memory error => tuning network 
➢ Thinner and less layers 
➢ Small number of epoch



Baseline (CNN) Result
❖ CNN: (10 Epochs, 10 Batches) 

❖ CNN: (50 Epochs, 50 Batches) (in progress)

Label # class Accuracy Error Time 

Category 1 49 52% 10.7 4 hours

Category 2 483 47% 11.68 5 hours

Category 3 5270 32% 4.89 11 hours

Category 1 49 12%  
(1 epoch)

3.42 20 hours



Experimental Result (category 3)

Model # Batch # Epoch Accuracy Error Time 

DenseNet 50/707 1 (running) 4% 9.83 10 days

ResNet 50/707 10 34% 3.94489 5.69 hours

ResNext 50/707 10 28.9% 4.51031 16.8 hours

WideResNext 50/707 10 41.93% 3.53318 6.11 hours

ResNet 707/707 3 (running) 36.69% 3.84427 3.35 days

ResNext 707/707 1 (running) 28.47% 4.50394 9.90 days

WideResNext 707/707 2 (running) 40.51% 3.49804 3.60 days



We are here now



Experimental results: Error in classifying

Mobile cover bag	 	 	 Mobile Case	 	 	 	 	
Mobile 

Laptop cover bag	 	 Mobile film protector	 	 	 Mobile 
Case



Conclusions and Future Work

❖ Baseline: CNN; Proposed: resNet, resNext, denseNet, wideResNet 
❖ All proposed networks have similar number of parameters 
❖ wideResNet performs the best 
❖ resNext gave worst results and is 3 times slower than resNet 
❖ DenseNet requires GPU with huge memory 
❖ Requires a lot of time, huge memory and                                                                                       

fast computational resources 
❖ Number of epochs has to be 70+ 
❖ Future: Submit result to Kaggle competition



Thank you 
Questions?



Baseline (CNN) Result
❖ CNN: (10 Epochs, 10 Batches) 

❖ CNN: (50 Epochs, 50 Batches) (in progress)

Label # class Accuracy Error Time 

Category 1 49 52% 10.7 4 hours

Category 2 483 47% 11.68 5 hours

Category 3 5270 32% 4.89 11 hours

Category 1 49 12%  
(1 epoch)

3.42 20 hours



Model # Batch # Epoch Accuracy Error Time / 10 
epochs

CNN 50/707 10 32% 4.89 19 hours

DenseNet 50/707 10 16.74% 5.38 1.5 days

ResNet 50/707 10 34% 3.94489 5.69 hours

ResNext 50/707 10 28.9% 4.51031 16.8 hours 

WideResNe
t

50/707 10 41.93% 3.53318 6.11 hours

CNN 50/707 50 38.23% 4.056 19 hours

DenseNet 50/707 50 22.73% 4.04 1.5 days

ResNet 707/707 25 
(running)

37.25% 3.99638 3.35 days

ResNext 707/707 3 28.75% 4.50174 9.90 days

WideResNe
t

707/707 20 
(running)

41.64% 3.50708 3.60 days


