
Multi-class Image Classification using Deep Neural Networks on Extremely
Large Dataset

Marija Stanojevic & Ashis Kumar Chanda
CIS Department, Temple University

{marija.stanojevic, ashis}@temple.edu

Multi-class image classification problem is a popular re-
search topic nowadays. Many researchers have proposed
different deep neural network models to solve this problem
in different ways. However, the problem is still challenging
for classifying thousands of classes. In this paper, a multi-
class image classification problem is solved for a extremely
large dataset. The large dataset contains 5,270 product im-
ages for a french e-commerce site containing almost 6.4
TB of image data. To solve this multi-class classification
problem, different existing models, such as vanilla convo-
lutional network, dense network, residual network, aggre-
gated residual transformation and wide residual network are
modified and tested. Adjusted wide residual network pro-
vides the best accuracy result (41.64%) over randomly gen-
erated validation dataset. Our code is publicly available on
online for future research purposes 1.

1. Introduction
Image classification is the task of assigning an input im-

age to a label from a set of categories. Even though the
problem looks simple and humans have a very good perfor-
mance on this task, there are many challenges in learning to
a machine to classify images [3]:

1. Viewpoint variation (object can take different positions
in respect to camera)

2. Scale variation (object size variation depends on its
closeness to camera and camera settings)

3. Deformation (deformation or shape change)

4. Occlusion (parts of an object can be occluded)

5. Illumination conditions (different lightening of pixels)

6. Background clutter (object blend into environment)

7. Intra-class variation (objects in class differ drastically)

1https://github.com/marija-stanojevic/image-classification

Many other problems (image segmentation, object de-
tection) in computer vision can be reduced to image clas-
sification problems, giving even more importance to this
problem. Image classification can be decomposed into
three tasks: 1) features extraction and selection; 2) fea-
tures/images embedding; 3) image classification (super-
vised, semi-supervised, unsupervised).

Usually, first, two steps have been done with scale-
invariant feature transform (SIFT) or in other hand-crafted
ways to produce vector descriptors of significant image fea-
tures. In the last step, k-nearest neighbor (KNN), support
vector machine (SVM), or other classification method was
applied on image feature vectors to categorize images. The
final step can also be done in an unsupervised way.

The application of deep learning methods has rapidly in-
creased in the current decade and is growing with time so
that now machine can make a decision correctly by ana-
lyzing image, voice, or steaming data. The applications in
computer vision spread on many research tasks, such as ob-
ject detection, object and image classification, face recogni-
tion, and so on.

The dominant model for image classification is convo-
lutional neural networks (CNN) because it can learn from
end-to-end training and achieve good accuracy. A CNN
can do all tasks using gradient descent (GD) or other op-
timization methods to optimize the steps for the best final
result. However, their usage wasn’t popular in the past be-
cause of large amount of training data, and computing re-
sources were required. In the last decade, both problems
are solved, and different modifications of CNN are created
to solve image classification problems.

To improve the accuracy of the solution, researchers pro-
posed to gradually increase the number of layers in CNN.
For example, LeNet5 [17] proposed to use five layers,
ImageNet [11] has eight layers, VGG model [13] came
with 19 layers, and finally, 22 layers are used in Incep-
tion/GoogleNet [5]. Recently, changes are introduced that
allowed more than 100 layers to be trained in a reason-
able time by using Highway [15] and Residual networks
(ResNet) [7].

1

Figure 1. A sample list of product classes

Data sets Size # product images
Train data 58.2 GB 7,069,896
Test data 14.5 GB 1,768,182

Table 1. Summary of data sets

Categories Label number
Category 1 49
Category 2 483
Category 3 5270

Table 2. Number of labels in each categories

As the number of layers increased, the problem of ex-
ploding/vanishing gradient became substantial, and training
became less efficient. This challenge was largely addressed
using normalization layers and normalizing input [9]. How-
ever, another problem appeared: degradation (as the number
of levels increases, accuracy gets saturated and then starts
degrading), which is not caused by over-fitting.

Multiple techniques were created to overcome this prob-
lem based on two main ideas: 1) bypass signal from one
layer to some future layer via identity connection and 2)
widen layers instead of increasing depth for better results.
This project uses ResNet [7], Wide Residual Networks
(WRN) [18], ResNext [16] and DenseNet [8] as starting
points that are modified to find the best solution for prob-
lem presented in section 2.

The rest of the report is organized as following - data set
is presented in section 2.1, and the problem is described in
section 2.2. Related works are discussed in section 3, and
proposed methods are described in section 4. Experimental
results are shown in section 5, and a discussion on results
is given in section 6 and finally. Summary and conclusions
are in section 7.

2. Dataset
For this study, we take data from a Kaggle competi-

tion [2]. The competition is designed by C’discount com-
pany [1] that owns a popular non-food e-commerce site
C’discount.com in France. The company is a general-
purpose retailer that has many different product categories.
Therefore, this website asks for a machine learning solu-

Figure 2. Deformation and scaling problem in product images

Figure 3. Occlusion problem in product images

tion that can automatically classify the products based on
their images. To train the model, they provide a data set of
7,069,896 million products that can contain one to four im-
ages per product, where each image has a size of 180 x 180
pixels in RGB format.

In this dataset, each product has three levels of cate-
gories. The first contains 49 labels, the second has 483
labels, and the third has 5,270 labels, shown in Table 2.
Category levels are organized in a tree-like structure, and
the task is to classify objects into one of 5,270 labels of the
third level. Figure 1, shows a sample list of product classes
where the first level category is TELEPHONE-GPS and the
second level category is ACCESSOIRE TELEPHONE con-
taining many third-level categories. Since these items be-
long to the same root category, they should have the same
shape and attributes. However, as it is shown in Figure 1,
there are very different objects under the same root cate-
gory. Hence, it brings a challenging problem to apply the
machine learning method and develop the best architecture.
The details of the training and test data set are shown in
Table 1.

The Kaggle competition provides data set in BSON for-
mat (binary string format). Since it is important to look at
the data to understand the problem challenges, a program
[4] is used to convert BSON files into image format. Fig-
ures 2, 3 and 4 are some examples of the dataset that clearly
show many of the image classification challenges.

2

Figure 4. One item in different angles and backgrounds

3. Problem description
This project aims to classify products into one of the

5,270 categories based on the images posted by the com-
pany. As explained in the above section, the real-life dataset
is very interesting because of many classes and a huge
amount and variety of images.

Overview of commonly used data sets for image classi-
fication problems is given in Table 3 and all these are much
smaller in the number of items and number of categories
than our selected data set. Recently, new data sets are in de-
velopment, such as ImageNet and COCO, which are more
similar to our selected dataset, but they are developed to
serve multiple computer vision problems.

Besides the size and number of classes, our data is dif-
ficult since it contains all challenges presented in Introduc-
tion. Some products can have multiple images from differ-
ent viewpoints, while other products have only one image,
and it can be taken from any viewpoint (not standardized),
as shown in Figure 4. Objects on images vary in scale (Fig-
ure 2 (b)) and sometimes are shown in different sizes on
the same image or product is shown in its parts. Object
can have different deformations (opened and closed laptop,
packed and unpacked clothes,...) (Figure 2).

In some cases, products are occluded: screen of the
phone which shows working display (Figure 2) or text or
declaration note above the object. The shapes and text back-
ground of Figure 3(a) and (b), look similar, but these are
two different products (book and mobile case). Hence, it
becomes challenging to make a decision correctly. Even
though images are expected to be as clear as possible for
the purpose of sale, they are taken from different users over
time, and therefore distinct illumination conditions have to
be taken into consideration as well.

Some images contain products on white background, but
it’s often not the case. There are occurrences where back-

data sets Classes # images (train + test) image size
CIFAR-10 10 50000 + 10000 32x32
CIFAR-100 100 50000 + 10000 32x32
SVHN 10 73257 + 26032 32x32

Table 3. Summary of data sets

ground has similar color/pattern as object. Such example is
given on Figure 4 (b) and (d). Since products are general-
type objects, like chairs, clothes, and so on, they have ex-
tensive intra-class variation.

4. Related Works
Image classification problem is an active area of re-

search, and most commonly, it is done using different con-
volutional networks. In this section, basic CNN model is
described at first since that concept was used as a baseline.
After that, other recently developed methods used as a start-
ing point for solving this problem, and they are described
next.

4.1. Convolutional Neural Network (CNN)
The idea of CNN was first discussed in 1980 [6], but it

became popular much later. CNN architecture is very simi-
lar to common neural network, but it allows better encoding
of certain properties of image file. To retrieve the proper-
ties, CNN connect each neuron to only a local region of the
input image volume; rather than whole image. This local
space is known as respective field and the process of reading
whole image file through this local space scanning into next
layer of neurons is known as filtering. Since CNN use the
same weight vector for all neurons in a single depth slice,
the forward pass of the CNN layer can in each depth slice
be computed as a convolution of the neurons weights with
the input volume. Hence the name is convolutional layer.

In CNN architecture, we can find three types of layers:
convolutional layer, pooling layer, fully connected layer that
can be additionally accompanied with batch normalization
or dropout. These layers help to transform image volume
into output (class score). However, the accuracy of final
outcome depends on the number of layers, their combina-
tion, size of layers, ways layers are connected, normaliza-
tions and activation functions used. Hence, it is our objec-
tive to use CNN in our problem with different structures and
find a model that would result in good accuracy. We will
use different modifications of basic CNN as the state-of-
the-art methods, but our baseline will still be a plain CNN
described in this section.

4.2. Residual Network (resNet)
Residual networks [7] are created as a solution to degra-

dation of very deep CNN, concretely with focus on improv-

3

Figure 5. Simplest resNet example given in paper - 34 layers

cardinality 1 2 4 8 32
width of bottleneck d 64 40 24 14 4

width of group convolution 64 80 96 112 128

Table 4. Timeline of activity

ing VGG-34 network. This network is connected in such a
way that it doesn’t learn to optimize original mapping, but
it rather optimizes residuals (Figure 5). It consists of many
blocks of residual learning connected in a deep CNN.

Each block consist of two 3x3 convolution layers with
ReLu activation between them and identity link that is
added to the output of the block. Therefore block learns
residuals F (x) = H(x) � x where F (x) = W2 ⇤ �(W1x)
and W1 and W2 are weights of first and second layer in
a block, respectively. Finally, y = F (x,Wi) + Ws ⇤ x,
where Ws is a projection of input and in case of identity it
doesn’t exist. Even though results from resNet paper sug-
gest that there is a slight improvement in results when pro-
jection Ws is used, authors suggest avoiding it in order to
decrease number of parameters drastically.

Residual networks are first networks that have been
trained with more than 1000 layers, but in case of such high
number of layers authors suggest modification of residual
block that will decrease number of parameters. They use
three layers in block in that case, where first and third lay-
ers have 1x1 convolutions and represent ”bottlenecks” and
middle layer is 3x3 convolution of features that are created
in ”bottleneck”.

Results are evaluated on ImageNet and CIFAR-10 data
sets and show improvement in performance comparing to
non-residual networks even when number of parameters is
comparable (depth is still larger in resNets in that case).

Figure 6. ResNext block in multiple views

4.3. Aggregated Residual Transformation - resNext

Idea of ResNext [16] network is based on residual net-
works, except that instead of widening the layers, they sep-
arate them in C sub-layers which are trained in parallel and
summed up before summation with the identity link. Num-
ber of parallel blocks is called cardinality (C) and it’s rela-
tion to layer width is given in Table 4. Block can be pre-
sented in multiple different ways as shown in Figure 6. Re-
formulations produce nontrivial topologies only when the
block has depth bigger than 2.

Results of resNet and resNext networks per epoch are
given in Figure 7 and they show that error drops like stairs
and at least 30 epochs are required for a first bigger drop in

4

Figure 7. Training and test error for resNet and resNext per epoch
number

Figure 8. Simplest resNet example given in paper - 34 layers

error.
In resNext F (x) =

PC
i=1 Ti(x), where Ti(x) can be

an arbitrary function which projects x into an embedding
and then transforms it. Then, y = x +

PC
i=1 Ti(x). Au-

thors don’t mention or consider dropouts in their work and
they don’t discuss projections of identity links as they are
given in resNets. Results show that resNext has better per-
formance than resNet for the same number of layers and
features. When comparing two resNext networks, better re-
sults are achieved with higher cardinality C keeping number
of parameters the same. Also, results show that for similar
number of parameters resNext has better results than WRN
on CIFAR-10 and CIFAR-100 data sets.

4.4. Wide Residual Network (WRN)

Wide residual networks [18] are improvement of resNet
networks that uses similar residual blocks with idea of
widening them instead of concatenating a lot of them to
get a deep network. They test different versions of resid-
ual blocks and conclude that best results are produced with
blocks that have 2 layers with 3x3 convolutions (Figure 8).

Figure 9. Train and test error for wide residual network per epoch
number

Figure 10. Small denseNet example

The most often widening factor of 2 is used, however results
showed that improvement in results is visible when widen-
ing factor grows up to 12. Authors didn’t test for higher
values because of high number of parameters.

Comparing to resNet that doesn’t use dropout at all,
WRNs suggest that dropout [14] between the 2 layers in
residual block gives the best result. They show that this ar-
chitecture gives better results than resNet with much less
layers and similar amount of parameters. Both, resNet and
WRN have issues when number of layers becomes too big.
In resNet work, they suggest that reason is over-fitting, but
they don’t give clear results to support that, so research
question is if degradation still appears in those cases.

Results of wide residual network per epoch are given in
Figure 9 and they show that error drops like stairs and at
least 60 epochs are required for a first bigger drop in error.

4.5. Dense Network - denseNet
The authors of [8] proposed denseNet, a new convolu-

tional network architecture, where one layer is connected
with all other layers in that block, as shown in Figure 10.
Also, input and outputs of each blocks are connected with
outputs of all other blocks. This model solves existing prob-
lems such as vanishing gradient, feature propagation and
reduction of the number of parameters. They also allow

5

Figure 11. Proposed simple CNN

feature reuse capability throughout the network. The au-
thors showed that their method has improvements in accu-
racy over previous methods on task of image classification.

Network has L layers which can be described with a non-
linear composite function Hl(Xl�1). Here l indexes the
current layer. If output of layer l is added to identity from
previous layer which can be described with next formula:

Xl = Hl(Xl�1) +Xl�1 (1)

However, denseNet uses direct connections from any
layer to all subsequent layers. Hence, the l th layer receives
the feature values of all preceding layers (X0, X1, ..., Xl�1)
as input:

Xl = Hl(|X0, X1, ..., Xl�1|) + (X0, X1, ..., Xl�1) (2)

Here, |X0, X1, X2, ..., Xl�1| means the concatenation of
the feature values produced in layers 0, 1, 2, ..., l�1. Hence,
there are in total l ⇥ (l � 1)/2 connections for a l layer
network.

For experimental analysis, the authors have conducted
experiment on four common object classification data sets
(CIFAR-10, CIFAR-100, SVHN, ImageNet). Different val-
ues of parameters were used to test the performance of pro-
posed model on these four data sets. The authors have
shared the project code (written in Lua) publicly in GitHub.

4.5.1 Memory efficient approach - denseNet

One drawback of denseNet [8] is that it needs huge mem-
ory to train the model and propagate the result of one layer
to all other layers. The authors of [12] provided a memory
efficient solution for this problem which is based on map
reducing method. By strategically using shared memory al-
locations, they reduced the memory cost for storing feature
maps from quadratic to linear.

Figure 12. Proposed residual network

5. Methods
In the following five subsections, we describe some mod-

els in detail that are used for solving this problem. At the
time of designing our proposed models, it was important
to keep the same number of parameters between different
networks in order to be able to compare their performance.
Only the baseline network is smaller in number of the pa-
rameters. Additionally, because of the huge data set, the
design of the network had to be minimalistic in order to be
able to train in a reasonable time and with our resources.

5.1. Convolutional Neural Network
The CNN architecture is used as a baseline in many pop-

ular image classification problems [10], [8]. The architec-
ture of CNN model is shown in Figure 11, and it includes
three convolutional (Conv), two fully connected (FC) lay-
ers, and three max-pooling layers.

Convolutional layers use 3 ⇥ 3 convolutions with filter
sizes 32, 64, and 64, respectively. The purpose of pooling
layers is to lower the number of parameters since the image
size is 180 ⇥ 180 pixels. First, the fully connected layer has
a size of 512 units, all activations are ReLu, except in the
final layer where the activation is softmax. Adam optimizer
is used with categorical cross-entropy loss. The learning
rate was 0.001.

5.2. Residual Network
The proposed residual network (Figure 12 is based on

the 34-layers residual network as given in the original pa-
per. Because of resource restrictions, this network had to be
smaller, so it contains three chunks (different colors in Fig-
ure 12 divided by pool layer instead of four blocks that the
original resNet has. Additionally, in the second and third

6

Figure 13. Proposed aggregated residual transformation - resNext

chunk, there is one more pooling layer after the first resid-
ual block. This is not used in original resNet, but pooling
helped in reducing the number of parameters and training
time. Each chunk contains four residual blocks. Each resid-
ual block has two 3x3 convolutional layers.

Since the network is small already, residual blocks with
1x1 bottleneck convolutions surrounding the 3x3 convolu-
tional layer are not used in the proposed residual network.
Before all residual blocks, there is a 3x3 convolutional
layer, and after all residual blocks, there is an average pool
and fully connected layer as used in original resNet. Convo-
lutional layers are smaller (thinner) than in original resNet
which helped in reducing number of parameters and train-
ing time. Each chunk is twice wider than previous (widths
are 16, 32 and 64).

There is no dropout, but after each convolution, there
is batch normalization followed by an activation function.
Identity is added to output from the last convolution from
that block, and then batch normalization and activation
function are applied. Pooling layers are implemented as
strides of size 2, and they are used exactly before convo-
lution.

In all the layers, ReLu activation function is used which
is proven to be the best activation function for this kind
of example. Weights are initialized using variance scaling,
which was tested together with other weights initialization
on similar problem by one of the authors and gave best re-
sults comparing to the other weights initialization methods.
Biases are initialized with zeros. All convolutions have L2
regularizer. Fully connected layer has softmax activation,
the optimizer is momentum (learning decay is 0.1 and de-
cay step is 32000) with categorical cross-entropy loss.

5.3. Aggregated Residual Transformation
The proposed aggregated residual transformation (Fig-

ure 13 is based on the original resNext, which is created
in such a manner to have a similar number of parameters

Figure 14. Proposed wide residual network

as proposed in resNet. The proposed network is smaller
than the original examples. It has the same general struc-
ture as the proposed resNet, except that each chunk has two
resNext blocks.

ResNext blocks consist of two 1x1 convolutions and 3x3
convolutions between them. Cardinality is C=32 because
it gave the best results in the original network. There is
no dropout, but after the first bottleneck convolution and
middle convolution, there is a batch normalization followed
by an activation function. The output of the last convolution
is joined from all 32 parts and added with identity. Pooling
layers are implemented as strides of size two, and they are
used exactly before convolution. Weight decay is 0.0001 in
all cases. Other parameters are the same as described in the
fourth paragraph of 5.2.

5.4. Wide Residual Network
The proposed wide residual network (Figure 14 is based

on the original wide residual network so that it has a simi-
lar number of parameters as the proposed resNet. The pro-
posed network is smaller than the wide residual networks
given in the original paper. It has the same general struc-
ture as resNet, except that each chunk has two wide residual
blocks.

Wide residual blocks consist of two 3x3 convolutions
and a dropout of 0.3 between them. Dropout value, con-
volutions size, and the number of convolutional layers in
the block are the same as the original paper because they
produced the best accuracy results in the original paper.

After each convolution, there is batch normalization fol-
lowed by an activation function. Identity is added to output
from the last convolution from that block, and then batch
normalization and activation function are applied. Pooling
layers are implemented as strides of size 2, and they are
used exactly before convolution. Dropout layer is added af-
ter activation of the first convolution in wide residual block.

The width is k=2, even though the original paper showed

7

Figure 15. Proposed Dense Network

that k=10 and k=12 give the best results. Using k=10 and
k=12 wasn’t possible because of the huge number of pa-
rameters, so k is chosen from paper to be small and give the
biggest improvement in accuracy. Other parameters are the
same as described in the fourth paragraph of 5.2.

5.5. Dense Network
The proposed model is based on denseNet [8]. Since

each layer of the dense network receives input from pre-
ceding layers, the network becomes very large and complex
to load in memory. A previous work discussed [12] about
how to reduce memory using shared memory strategy, but it
wasn’t possible in this scenario because the memory access
privilege is not available in our system. Hence, thin layers
are considered in each dense block for our study.

As discussed first, since the concatenation of huge layers
rises a problem in memory, three dense blocks are consid-
ered in our proposed method, and only one layer of one
block is connected with preceding layers. It means there
is no connection between one block layer to another block
layer, as shown in Figure 15. In the original architecture, the
authors of [8] have used 40, 100, and 160 layers in different
dense blocks.

In our proposed method, only l = 10 layers are used
per block. Each layer consists of three convolutional layers
(two bottlenecks with convolutions 1 ⇥ 1 that are surround-
ing convolutional layer with 3 ⇥ 3 convolution) and an av-
erage pool layer with stride 2. It means, the last layer of
each block has 10 ⇥ (10 � 1)/2 = 45 connections. Since
each layer has the same filter size, the transition layer is not
considered in the proposed method. But, dropout (0.5) is
used at the end of each block.

Before all the dense blocks, there is a convolutional layer
with 3 ⇥ 3 convolutions and filter size 16, while all convo-
lutions in the dense block are of size k = 12. All the layers
use ReLu activation and L2 regularizer. Weights are initial-
ized with the variance scaling method and biases set with
zeros. Weight decay is 0.0001. Adam optimizer is used
with categorical cross-entropy loss, and the learning rate is
0.001.

6. Experiments and Results
All the state-of-the-art models used in this project are

originally implemented in Lua programming language us-

ing Torch library. However, we implemented all of the
proposed methods in python programming language using
tensorflow and tflearn libraries. For resNet, resNext and
denseNet, we found some implementations in tflearn, while
CNN and wide residual network (including wide residual
block) were fully developed by us. Implementations for
resNet, resNext and denseNet were checked for accuracy
and changed to fit the proposed models.

The dataset contains three categories: level 1 category
contains subcategories of level 2, while level 2 contains sub-
categories of level 3. Training (58.19 GB) and test (14.53
GB) data sets contained BSON representations of images.
We preprocessed data that consisted of getting products
from given data sets and getting images for each product
(between 1 and 4 images per product). Additionally, labels
were extracted from the training data set, and product ids
were extracted from the test data set.

Images were decompressed, and the whole data set was
split into a batch of 10,000 products (around 20000 images).
We tried multiple sizes of batches, but the decreasing size
of batches (128 or 256) increased the time to read and write
them twice. On the other hand, batches of size bigger than
10,000 caused memory error. Therefore, 707 training and
177 test batches were created, having 6.4 TB in size after
all the changes.

Images were preprocessed and augmented using appro-
priate functions from the tflearn library. Preprocessing in-
cluded zero centering and normalization, while augmenta-
tion included left-right flip and in case of CNN rotation with
max angle 25 degrees.

Two cross-validation sets were extracted, one of size 1%
of the whole data set, which had around 70000 (1000000)
products and another in which 1 product was extracted from
each batch, which had around 707 products (1500 images).
For both data sets, products were extracted randomly. Un-
fortunately, the first data set caused memory error, so sec-
ond cross-validation data set was used.

In order to be able to store a huge amount of data and
to process it fast, GPU with big memory and huge storage
system was required. For that purpose owlnesttwo high-
performance computing (HPC) system was used for dataset
splitting and models training and testing. This system has
500 TB of shared storage, NVIDIA Tesla P100 PCle GPUs
with 12 GB of memory, and runs on a Linux operating sys-

8

Figure 16. Results of CNN for different category levels on ran-
domly sampled 10 batches that are evaluated on subsample of
those 10 batches

Figure 17. Results for category level 3 on 10, 50 and all batches
that are evaluated on subsample taken from the whole data set

tem.
Jobs run in a virtual environment, and each user can run

max two jobs in parallel in case there are free GPUs. HPC
is used by whole Temple University. Each job can last for
maximum 48 hours and stability of system is not guaran-
teed, so the program has to save model often enough in or-
der not to lose processor’s work. On the other side, writing
often takes time, so in those experiments, the model was
saved after every 50 batches or at the end of epoch. Models
were developed on CPUs with 64GB RAM and Windows
operating system and tested locally on CIFAR-10 dataset to
ensure accuracy of a model.

Because of the huge dataset and limited time, the first
analysis was done using CNN with 10 out of 707 batches
and training separately for each category level to understand
training time and possible accuracy. The training lasted for
ten epochs, and accuracy, error, and time used are given in
Figure 16. Accuracy for category 1 is highest, 52%, accu-
racy for category 2 is lower, 47%, while accuracy for third
category level is the only 32%. Accuracy was measured on
1% of random samples from those ten batches and not on
the cross-validation dataset described above.

The time required in those cases suggested that other
models have to be as light as possible in a number of param-

Figure 18. ResNet error per epoch

Figure 19. Residual network error per iteration

eters. However, that wasn’t enough, so many other code im-
provements were made to decrease the time required to train
one epoch, including minimization of reading and writing
time and minimization of calculations that are not required
for the final result.

After all improvements, some networks were still slower,
such as CNN, denseNet and resNext, so it was clear that
comparison between them on the whole dataset and a huge
number of epochs for category level three is not possible.
Therefore, the first experiment was done on 50 randomly
chosen batches with ten epochs, and the best result was
achieved by the wide residual network, followed by residual
network and by CNN.

CNN and dense network were also tested on 50 ran-
domly chosen batches with 50 epochs, and their results im-
proved slightly. The other three networks were tested on the
whole dataset, and their accuracy first dropped comparing
to results on 50 batches only, but as the number of epochs is
increasing, results are getting better, however, when mod-
els performance is compared, the order stays the same as
in case of 10 epochs on 50 batches only. The denseNet
and resNext have the worst performance even though they
should have the best results.

Results of resNet and wideResNet per epoch are given

9

Figure 20. Wide residual network error per epoch

Figure 21. Wide residual network error per iteration

on Figures 18 and 20, respectively, while Figures 19 and 21
give error per number of iterations. If those graphs are com-
pared with the error rate from original papers per epochs
number, it is visible that models haven’t yet reached 30 or
60 epochs that are required for a huge drop in error (accord-
ing to original papers). Additionally, the first flat part of
error graphs in original papers is achieved more gradually
than in the case of proposed methods, but this may be due
to different scale of error axes. Otherwise, graphs seem to
follow a similar pattern.

For all proposed methods error of the first flat part is
around 0.6-0.65, which is more than in original papers,
where it is around 0.5. This is probably due to the size of
dataset, ie. number of labels which is 5027 in this problem
versus around 100 in original results. Graphs of error per
iterations show that results of resNet are more variable than
results of wideResNet.

7. Discussion
It is not clear why resNext perform so badly, but prob-

ably because layers are very thin, so the network can’t
achieve it’s full potential. Because of limited resources, a
huge amount of time that this network requires comparing
to resNet and wideResNet and bad performance, after three

Figure 22. Error in product labeling

Item Incorrect label Correct label
a Mobile Mobile case
b Mobile case Mobile film protector
c Mobile cover bag Laptop cover bag

Table 5. Summary of data sets

epochs on full dataset this model was stopped. According
to results from paper, it should have a similar or best perfor-
mance to resNet in this early phase, which is not happening.

DenseNet obviously can’t give good results being this
small. It requires wider layers, a bigger number of layers in
the block, and more blocks to achieve its full potential, so
the decision was not to run it on the whole dataset. Addi-
tionally, it is the most expensive method time-wise.

Because of available resources, this project requires
smaller and thinner models. This would be a requirement
of any smaller real system, so these results show how resis-
tant state-of-art methods are in this case. While wide resid-
ual networks and residual networks gave similar results and
were able to train acceptably fast, dense network and aggre-
gated residual transformation (resNext) didn’t pass this test.
They require large memory and a lot of computational/time
resources to achieve their best performances.

The dataset contains a huge variety of products, and pic-
tures are taken from different users and are not standardized,
so finding unique features of each product is challenging
due to background occlusion, intra-class variability, differ-
ent lighting, and viewpoints. The huge number of classes
that are very similar between themselves brings an addi-
tional challenge to the algorithms.

Since the dataset contains almost five thousand differ-
ent types of products, it is possible that some products have

10

very common features. Hence, it would be difficult for a
learning model to distinguish the labels. However, it is
an important matter to investigate how human-level perfor-
mance works on such product items.

For this purpose, a set of product items is selected ran-
domly that are labeled incorrectly by our proposed models.
For example, three items are shown in Figure 22 that are in-
correctly labeled through our proposed model. The correct
and incorrect labels of the three items are given in Table 5.
Now, if a human tries to identify the products from the fig-
ures, it would also be challenging to him to annotate them
properly. For example, item (c) in Figure 22 looks like a
cover bag, but it is difficult to guess it as a mobile or lap-
top cover bag because each image has the same scale in the
dataset. Hence, it becomes difficult to predict the cover bag
for laptops or mobile. The same dilemma happens to pre-
dict the mobile film protectors and mobile cases from the
Figure 22.

8. Conclusion

In this project, extensive experiments are conducted to
find the best deep convolution model for the multi-class
large dataset with limited computational and memory re-
sources. Many errors and trial methods have been per-
formed to handle the large dataset and discover a thinner
and smaller network by modifying existing models that can
perform well in multi-class image classification problems.
After testing different existing models such as dense net-
work, residual network, aggregated residual transformation,
and wide residual network, we found the last one is the best
for solving the problem with our limited resources.

Since the dataset contains multiple labels, we have a plan
to train the network on one first-level category and to use
this as a pre-trained network for training on the second-level
category, which will be used as a pre-trained network for the
third-level category. Another idea is to have multiple output
objectives, one for each category and multi-task optimiza-
tion. In our future work, we plan to test those ideas on the
part of the ImageNet dataset [11], which also has multiple
level categories for different images. This should be done
by extending original state-of-the-art methods for the multi-
task problem instead of considering thinner network.

9. Acknowledgment

This research work is used as a final course project of
CIS 5543 (Computer Vision) course, and we are thankful
to our course instructor, Dr. Haibin Ling, for his guide-
lines. This research was supported in part by the National
Science Foundation through major research instrumentation
grant number 1625061.

References
[1] Cdiscount e-commerce site. https://www.cdiscount.com/.
[2] Cdiscount’s Image Classification Challenge.

https://www.kaggle.com/c/cdiscount-image-classification-
challenge.

[3] Image Classification. http://cs231n.github.io/classification/.
[4] Processing BSON Files. https://www.kaggle.com/inversion/

processing-bson-files.
[5] D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going Deeper with Convolutions. Proc. of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2015.

[6] K. Fukushima. Neocognitron: A self-organizing neural net-
work for a mechanism of pattern recognition unaffected by
shift in position. Biological Cybernetics, 36(4):193–202,
1980.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning
for Image Recognition. Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 770–778,
2016.

[8] G. Huang, Z. Liu, and K. Q. Weinberger. Densely connected
convolutional networks. CoRR, abs/1608.06993, 2016.

[9] S. Ioffe and C. Szegedy. Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate
Shift. Proceedings of the 32nd International Conference on
Machine Learning (ICML-15), 2015.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks.
Advances in Neural Information Processing Systems (NIPS),
pages 1097–1105, 2012.

[12] G. Pleiss, D. Chen, G. Huang, T. Li, L. van der Maaten,
and K. Q. Weinberger. Memory-efficient implementation of
densenets. CoRR, abs/1707.06990, 2017.

[13] K. Simonyan and A. Zisserman. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition. arXiv
preprint arXiv: 1409.1556v6 [cs.CV], 2015.

[14] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: a Simple Way to Prevent Neural
Networks from Overfitting. JMLR, 2014.

[15] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training
Very Deep Networks. Advances in Neural Information Pro-
cessing Systems (NIPS), 2015.

[16] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He. Aggregated
Residual Transformations for Deep Neural Networks. arXiv
preprint arXiv:1611.05431v2 [cs.CV], 2017.

[17] Y. B. Y. LeCun, L. Bottou and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of
the IEEE, 86(11):2278–2324, 1998.

[18] S. Zagoruyko and N. Komodakis. Wide Residual Networks.
arXiv preprint arXiv: 1605.07146v4 [cs.CV], 2017.

11

View publication stats

https://www.researchgate.net/publication/352569096

