
Assignment 2

Objects, arrays and linked lists in memory

Linked lists manipulation

Data Structures, Fall 2018

TA: Marija Stanojevic

Primitive types representation in memory

char - 1 byte (= 8 bits)

short - 2 bytes (16-bits)

int - 4 bytes (32-bits)

long - 8 bytes (64-bits)

float - 4 bytes (32-bits)

double - 8 bytes (64-bits)

No cast from smaller to bigger or

when equal (int -> float, short->long)

Need to cast from bigger to smaller

(e. g. long -> short, double -> int)

[1] https://tex.stackexchange.com/questions/148778/how-to-draw-vertical-arrays-with-diagonal-arrows-to-represent-memory-in-tikz

https://tex.stackexchange.com/questions/148778/how-to-draw-vertical-arrays-with-diagonal-arrows-to-represent-memory-in-tikz

Primitive vs Object types in memory

- When object is created (type

starts with uppercase) two

things are saved in memory:
- Values of data fields (from previous slide)

- Reference - address of the place where data is saved

- When primitive types (start with lowercase letters)

instances are created, only values are saved

in memory

- Primitive types are: int, short, double, float, long

- Objects: String, Circle, Node, LinkedList, Stack,...

What is the size of reference in memory

What is the difference between 32-bit and 64-bit operating systems?

Addresses / references storage require 32-bits (4 bytes) in older 32-bit operating

systems and 64-bits (8 bytes) in new operating systems.

Since we can store address in 64-bits, that means that we can address memory of

size 264 bytes, because 1 row has one byte and we have 264 combinations to

address a row.

In old computers, we could address only 232 bytes = 22 * 230 = 4 * 1GB = 4GB of

memory. In new computers, we can address 264 bytes = 24 * 260 = 4 * 1EB = 16EB

Objects representation in memory
Object Message takes

29 bytes to store data

fields + 8 bytes to store

reference to Message

object

public class Message {

private char token;

private Date

timeStamp;

private int receiver;

private int

communicator;

private int msgTag;

private double

msgSize;

// constructors

// getters & setters

// other methods

[2] https://www.researchgate.net/figure/represents-the-memory-representation-of-such-an-event-sequence-in-a-binary-encoding-All_fig21_284440851

TimeStamp is reference to object Date, so it takes 8 bytes. Once

timeStamp is initialized, additional 32 bytes are used to store its values

https://www.researchgate.net/figure/represents-the-memory-representation-of-such-an-event-sequence-in-a-binary-encoding-All_fig21_284440851

Arrays representation in memory

int [] ar = new int [3];

ar[0] = 5;

ar[1] = 4;

ar [2] = 10;

[3] https://overiq.com/c-programming/101/pointers-and-2-d-arrays/

Arrays of objects would be of size N *

k, where N is length of array and k is

size of object in memory

Array of 10 messages takes 290 bytes

to store data fields and 80 bytes to

store references to the objects, so 370

bytes in total.

Message [] ar = new Message[10];

https://overiq.com/c-programming/101/pointers-and-2-d-arrays/

Linked lists in memory Head is a reference that shows

address of first node (1054).

In address 1054, we have value 2

and in next address reference to

second node (1051).

In address 1051, we have value 6

and in next address reference to

third node (1063).

If we define new reference to third

node (current), it would also contain

value 1063, ie. address of third node

current

http://www.youtube.com/watch?v=njTh_OwMljA

Linked list - cases

Make sure your functions work for:

● Empty list (head = null)

● List with only one element (head.next = null)

● List with few elements

● If index/position is given as argument make sure your function works for:
○ negative index

○ index 0

○ index that is lower than number of elements in the list

○ index that is equal to the number of elements in the list

○ index that is equal to number of elements in the list + 1

○ index that is bigger than number of elements in the list + 1

Class Node

private class Node {
private int data;
private Node next;
private Node(int data) {

this.data =
data;

next = null;
}
private Node(int data, Node

next) {
this.data =

data;
this.next =

next;
}

Node initialization:

Node x = null;
Node a = new Node(5);
Node b = new Node(10, null);
Node c = new Node(15, new

Node(3));

When variable is just declared (e.g. x), just

it’s reference is in memory, ie. 8 bytes.

When variable is declared and initialized

(e.g. a, b, c), both reference and data are

stored in memory: 8 bytes for reference +

12 bytes for Node data.

x = a; - copies reference/address of Node

with value 5 into x, so now x and a both

reference that Node.

Go through the list
private Node head;
public void goThroughTheList(int item) {

Node current = head;
count = 0;
sum = 0;
belongs = false;
while (current != null) {

count ++;
sum += current.data;
current = current.next;
if (current.data ==

item) {
belongs = true;

}
}

}
- Current.next in while condition means that last

element is not accessed.

- Don’t use it, except to add/remove element

from the last position.

Add element at index
private Node head;
public boolean add (int item, int index)
{

if (index < 0 || index > size())
{

return false;
}
if (index == 0) {

head = new Node(item, head);
return true;

}
Node current = head;
for (int i = 0; i < index-1; i++) {

current = current.next;
}
current.next = new Node(item,

current.next);
return true;

}

private Node head;
public boolean removeByValue(int item) {

if (head == null) {
return false;

}
if (head.data == item) {

head = head.next;
return true;

}
Node current = head.next;

Node prev = head;
while (current != null) {

if (current.data == item) {
prev.next = current.next;
return true;

}
prev = current;
current = current.next;

}
return false;

}

Remove element by index
private Node head;
public boolean removeByIndex (int item, int
index) {

if (index < 0 || index >= size())
{

return false;
}
if (index == 0) {

head = head.next;
return true;

}
Node current = head;
for (int i = 0; i < index - 1; i++) {

current = current.next;
}
current.next = current.next.next;
return true;

}

Remove element by value

java.api LinkedList

LinkedList is generic class. Data part of the nodes can be of any type.

add(E e) - adds to the end of the list

add(int index, E e) - adds to the position

addFirst(E e) - adds to the beginning

addLast(E e) - adds to the end of the list

clear() - removes all elements from the list

get(int index) - gets value at position

getFirst() - gets value from head

getLast() - gets value of the last node

remove() - removes first element of the list

remove(int index) - removes from position

removeFirst() - removes first element

removeLast() - removes last element

size() - returns size of the list

