
Assignment 4

Recursion, call-by-value, call-by-reference

Data Structures, Fall 2018

TA: Marija Stanojevic

Introduction

Recursion is useful when problems can be represented by a smaller version of the

same problem.

It consists of two parts:

- exit condition (can be multiple exit conditions)

- solution that is used in all other cases except in exit condition - simplifies

problem until it it becomes so simple that it can solved by the exit condition

Every problem that can be solve recursively, can be solved iteratively

Recursion is easier to code, but much more time and memory consuming! WHY?

Example

Sum first N numbers:

private sum(int n) { //recursive

if (n == 0)

return 0;

else

return n +

sum(n-1);

}

public sumFive() { //non-recursive

System.out.println(sum(5));

}

What happens in execution

sumFive() // non-recursive

sum(5) // recursive, else is true, prints 15

return 5 + sum(4), else is true, 5 + 10 = 15

return 4 + sum(3), else is true, 4 + 6 = 10

return 3 + sum(2), else is true, 3 + 3 = 6

return 2 + sum(1), else is true, 2 + 1 = 3

return 1 + sum(0), else is true, 1 + 0 = 1

return 0; // if condition is true

What is happening in memory during recursion?

Call-by-value & Call-by-reference

In java call-by-value happens when argument is simple type (int, long, double,...)

Otherwise it is call-by-reference.

Call-by-value means that value that is given as argument is copied in memory as

parameter of function that is called. Because value is copied, if we change it, just

local copy is changed. Local copy will be deleted once function ends and it won’t

effect original value.

Call-by-reference means that address of object is copied in memory as parameter

of function that is called, so that function sees the copy of address. Because

address is copied, if we change it just local copy of address changes and it will be

deleted once function ends. It won’t effect original address. However, if we change

object that address refers to, it will stay changed after we exit function.

public void multiplyBy5 (int val) {

val = val * 5;

System.out.println(val); //What is

printed?

}

public void multiplyBy3 (int val) {

val = val * 3;

System.out.println(val); //What is

printed?

return val;

}

int a = 3;

multiplyBy5(a);

System.out.pritnln(a); //What is printed?

multiplyBy3(a);

System.out.pritnln(a); //What is printed?

a = multiplyBy3(a);

System.out.pritnln(a); //What is printed?

Call-by-value example Call-by-reference example

public void multiplyBy5 (Node val) {

val.data = val.data * 5;

System.out.println(val); //What is

printed?

}

public void multiplyBy3 (Node val) {

val = new Node(val.data * 3);

System.out.println(val); //What is

printed?

return val;

}

Node a = new Node(3);

multiplyBy5(a);

System.out.pritnln(a); //What is printed?

multiplyBy3(a);

System.out.pritnln(a); //What is printed?

a = multiplyBy3(a);

System.out.pritnln(a); //What is printed?

public void multiplyBy5 (int val) {

val = val * 5;

System.out.println(val); // 15

}

public void multiplyBy3 (int val) {

val = val * 3;

System.out.println(val); // 9

return val;

}

int a = 3;

multiplyBy5(a);

System.out.pritnln(a); // 3

multiplyBy3(a);

System.out.pritnln(a); // 3

a = multiplyBy3(a);

System.out.pritnln(a); // 9

Call-by-value example Call-by-reference example

public void multiplyBy5 (Node val) {

val.data = val.data * 5;

System.out.println(val); // 15

}

public void multiplyBy3 (Node val) {

val = new Node(val.data * 3);

System.out.println(val); // 45

return val;

}

Node a = new Node(3);

multiplyBy5(a);

System.out.pritnln(a); // 15

multiplyBy3(a);

System.out.pritnln(a); // 15

a = multiplyBy3(a);

System.out.pritnln(a); // 45

