
Computer Systems & Low-

Level Programming

C: headers, control structures, loops,

functions

Marija Stanojevic

Spring 2019

● ++x vs x++

● x += 1 is equivalent to x = x + 1 and to ++x

● getc (stdin) or getchar() - get character from standard input

● putc(c, stdout) or putchar(c) - put character c in standard output

● #define PI 3.14 - defines constants

● #include<stdio.h> - includes libraries

● Famous libraries: <stdio.h>, <stdlib.h>, <ctype.h> (character handling),

<math.h>, <time.h>, <string.h>, <limits.h>, <float.h>

● ‘\0’ - denotes end of string

Important functionalities

What are .h files

● Arrays: int n[5] = {32, 27, 64, 18, 95};

○ Get i-th element: n[i]; *n+i; - those two are equivalent

● Matrices: float x[2][3] = {{1, 2, 3}, {4, 5, 6}};

○ Get element: n[i][j]; *n + i*3 + j; - those two are equivalent

● Make sure you are within the bounds!

● const int a = 5; // value 5 can’t be changed

● const int *const ptr = &x; // const ptr to const value

● static int a; - initialized as 0 (not happening with int a). Remains in

memory until program is running. Static global variables and functions

scope is file.

Control structures
#include <stdio.h>

#define TRUE “Very much”

#define SO_SO “So-so”

#define FALSE “Not at all”

int temp; // global variable

int main() {

if (temp >= 50) {

printf(“How cold? ”,

FALSE);

} else if (temp >= 40) {

printf(“How cold? “,

SO_SO);

} else {

printf(“How cold? ”,

TRUE);

}

}

switch(temp) {

case 100:

printf(“Insanely hot”);

break;

case 70:

printf(“Great

weather!”);

break; // what if we

forget it?

case 30:

printf(“Freezing!”);

break;

default:

printf(“Can’t tell you”);

}

Conditional expression: e1 ? e2 : e3:

(temp < 50) ? printf(“Cold”) :

printf(“OK”);

Loops

for (unsigned int i = 0; i < 20; i++) { printf(“%d ”, ++i);} // what will be printed?

double grade = 2.5;

while (grade < 2.5) {puts(“Study”); grade += 0.2;}

printf("%10.2f", grade); // what is printed? => 2.5

do {puts(“Study”); grade += 0.2;} while (grade < 2.5);

printf("%-10.2f", grade); // what is printed? => 2.7

break: exits from for, while-do, do-while loop immediately

continue: skips the rest of the lines in the for, while-do, do-while loop for current

value of runner (i, grade); increases runner and goes back into the loop

goto location: jumps to the location and runs from there

Functions and variable scope

● Variable scope: says where the variable can be accessed from. Variable has

scope in block where it is defined and all of its children blocks.

● Block is everything that starts with { and ends with }

● Static before variable name can change this behavior (check slide 5)

● Global variable can be accessed from all parts of that program

● Local variable is defined in some smaller block (function, loop) and can be

accessed only inside that block

● Function declaration: int max (int n1, int n2); has return type, parameters’

list and their types. Required if function is defined after call.

● Function: int max (int n1, int n2) { if (n1 > n2) return n1; else return n2;}

● Function call: max (3, 5); or int a = 5, b = 3; max(a, b);

