
Computer Systems & Low-

Level Programming

C: pointers, call-by-value, call-by-

reference, bit manipulation

Marija Stanojevic

Spring 2019

● Check comments you got for assignments

● Next assignments: if code doesn’t run on server => 0 points for that work

● return 0; vs exit(0);
○ return leaves function and exit leaves the program; exit is defined in <stdlib.h>

● Division of two integers is integer
○ Cast one of the parameters to float in order to get float result (float)a/b; (float)5/2; => 2.5

○ (float) (a/b); would first calculate integer result and then turn it into float (float)(5/2); => 2.0

● Printing % => printf(“Discount is 10%%”); would print: Discount is 10%

● Printing “ => printf(“This is \”Temple\””); would print: This is “Temple”

● scanf(“%s”, str); vs gets(str); vs fgets(str, 20, stdin);
○ scanf() and gets() allow don’t check size of input, so they are considered unsafe

○ use fgets(s, 20, stdin) instead; second parameter is max size of input, last parameter says

where to read input from (stdin - standard input or file pointer)

Review (1)

● Don’t specify format of printf in variable: printf(str); is wrong and insecure

● If you call function before you define it, you need to declare it on top of the file
○ float avg(int n);

● printf(“%.2f”, val); - prints float value with 2 decimal places

● break - in loops and switch
○ if you are in switch and use break you would exit from switch, but not from loop around it

○ if you want to break from loop under some condition, use if/else for condition

● Can’t condition on inequalities in switch in C
○ certain case is only one value, not a range of values; if you need ranges, use if/else

● After last character in string there must be ‘\0’ to announce C that string ends
○ Make sure to have char array of size at least n+1 for string of length n

● EOF character means that it’s end of file
○ if (c == EOF) printf(“File is read”);

Review (2)

● Variable naming rules in C:
○ use letters (uppercase and lowercase), numbers and _

○ can’t start with number

○ #define WORD_WORD 100; is most commonly used syntax to define symbolic constants

○ int length1 or int length_1 or strLength or str_length are all often used in community

○ Choose one style and stick to it in the whole code

● #define CON 100; vs const int con = 100;
○ first is symbolic constant and doesn’t occupy memory, instead every CON in code is

substituted with 100. There is no datatype.

○ second is integer constant which is stored in memory as integer, but value can’t be changed

● sizeof (int) - gives the amount of bytes reserved in memory for that type

● fflush(stdin) - empty standard input

Review (3)

Pointers, by-value vs by-reference

● To access the address of the variable use &

● If you know the address and want to access data, use *

● Addresses have 32-bits (=>old, up to 4GB RAM) or 64-bit (up to 16EB RAM)

● When argument is passed by-value, its value is copied to function’s stack

and all the changes happen on the copy. Once function ends its stack is

deleted and program returned to the stack of the caller function. No change is

visible, except if value was returned and saved into variable of caller function.

● When argument is passed by-reference (address) all the value changes

happen at that address, so they are visible after function ends

● In C, pass by-value is default

● To pass by-reference, you need to use & in front of the variable name

By-value vs by-reference example

include <stdio.h>

int main() {

char name[50]; // name is an address of the first char in

name

int age; // age is value, not address

int* ageP = malloc(sizeof(int)); // ageP is address which data is int

scanf(“%s”, name); // stores input starting from address name

scanf(“%d”, age); // memory fault error, storage address

required

scanf(“%d”, &age); // stores input in the address of age value

scanf(“%d”, ageP); // stores input in the address ageP

printf(“%d”, age); // prints value of age

printf(“%d”, *ageP); // prints value of age stored in address ageP

printf(“%d”, ageP); // prints int version of address

printf(“%p”, ageP); // prints address of ageP in hexadecimal

return 0;

}

Bit Manipulation (1)

Decimal to binary: 140

Divide: 140/2 = 70; 70/2 = 35; 35/2 = 17; 17/2 = 8; 8/2 = 4; 4/2 = 2; 2/2 = 1; 1/2 = 0;

Modules: 140%2=0; 70%2=0; 35%2=1; 17%2=1; 8%2=0; 4%2=0; 2%2=0; 1%2=1;

Result (read modules from right to left): 1000 1100

Bit Manipulation (2)

Binary to decimal: 1000 1100

● Multiply each digit by 2n, where n is position from the right, sum:

○ 1*28 + 0*27 + 0*26 + 0*25 + 1*24 + 1*23 + 0*22 + 0*21

Binary addition: do right alignment of numbers and add digits in same position.

● Sum numbers from right to left. Append smaller number with 0 on the left.

● If sum is 2 write 0 and add one to the position on the left.

● Example: 1000 1100 (decimal 140)

● + 0001 1001 (decimal 25)

● Result: 1010 0101 (decimal 165)

Bitwise Negation: ~1000 1100 => 0111 0011 (decimal 115), 0 goes to 1 and 1 to 0

Bitwise AND: do right alignment of numbers. Append smaller with 0 on the left.

● Rules: 0 & 0 => 0; 0 & 1 => 0; 1 & 0 => 0; 1 & 1 => 1

● Example: 1000 1100 (decimal 140)

● & 0001 1001 (decimal 25)

● Result: 0000 1000 (decimal 8, always <= than both operands)

Bit Manipulation (2)

Bitwise OR: do right alignment of numbers. Append smaller with 0 on the left.

● Rules: 0 | 0 => 0; 0 | 1 => 1; 1 | 0 => 1; 1 | 1 => 1

● Example: 1000 1100 (decimal 140)

● & 0001 1001 (decimal 25)

● Result: 1001 1101 (decimal 157, always >= than both operands)

Bitwise XOR: do right alignment of numbers. Append smaller with 0 on the left.

● Rules: 0 ^ 0 => 0; 0 ^ 1 => 1; 1 ^ 0 => 1; 1 ^ 1 => 0

● Example: 1000 1100 (decimal 140)

● & 0001 1001 (decimal 25)

● Result: 1001 0101 (decimal 149)

What is the difference?: ! vs ~; && vs &; || vs |

● Yellow operand is logical operator on the level of whole number

● Orange operand is bitwise operator and compares bit-by-bit in number

Shift right >>: shifts all bits to the right X times and X rightmost bits are deleted.

Same as division by 2X.

● 1000 1100 >> 2; gives 1000 11 which is decimal 35, (ie. 140 / 22 = 35)

Shift left <<: shifts all bits to the left X times and zeros are added to the X

rightmost bits. Same as multiplication by 2X.

● 1000 1100 << 3; gives 100 0110 0000, decimal 1120 (ie. 140*23=1120)

Binary to octal:

● 1000 1100 = 10 001 100 => 10 becomes 1 * 21 + 0 * 20, ie. 2. 001 becomes 0 *

22 + 0 * 21 + 1 * 20, ie. 1. 100 becomes 1 * 22 + 0 * 21 + 0 * 20, ie. 4. So, 214.

Hexadecimal to octal:

● 1000 1100 => 1000 becomes 1 * 23 + 0 * 22+ 0 * 21 + 0 * 20, ie. 8. 1100

becomes 1 * 23 + 1 * 22 + 0 * 21 + 0 * 20, ie. C. So, hexadecimal number is 8C.

Octal to binary: same as decimal to binary, but divide and take moduo with 8

Hexadecimal to binary: same as above, but divide and take moduo with 16

Bit Manipulation (3)

Two’s complement of X is ~X + 1:

● ~1000 1100 + 1 = 0111 0011 + 1 = 0111 0100

Binary subtraction:

● Example: 1000 1100 (decimal 140)

● - 0001 1001 (decimal 25)

● Result: 0111 0011 (decimal 115)

Negative number is two’s complement of its positive value (starts with 1):

● 25 is 0001 1001 => -25 is ~0001 1001 + 1 = 1110 0110 + 1 = 1110 0111

Float numbers to binary float numbers:

● 0.125 * 2 = 0.25, 0.25 * 2 = 0.5, 0.5 * 2 = 1.0 => 0.001

● 0.675*2=1.35, 0.35*2=0.7, 0.7*2=1.4, 0.4*2=0.8, 0.8*2=1.6,...=> 0.10101

INT_MIN and INT_MAX is the range of integers that can be stored.

● What happens when we do INT_MAX + 5? We get INT_MIN + 4

● What happens when we do INT_MIN - 10? We get INT_MAX - 9

Bit Manipulation (4)

Byte ordering

● Big endian: most significant byte first: as we are used to write numbers

● Little endian: least significant byte first: used in most computers to make

bitwise operations easier

● Addition: pointer + integer increments value of pointer: int i, *p; p = p+i;

● Subtraction: pointer - pointer results in integer which says how distant two

pointers are (eg. find position of element in array): int i, *p, *q; i = p - q;

● No other operations are possible

Check bitwise.c code

Check lab4.c code

Operations with pointers

