
Computer Systems & Low-

Level Programming

C: multidimensional arrays, pointers to

functions, preprocessor, chars and strings

Marija Stanojevic

Spring 2019

Memory details

1
char a[10]; // allocates place for 10*int

in stack and stores their address in a

char *p; // allocates place for one pointer

in memory, p value is null

2 a is an array p is a pointer

3
char a[10] = “don’t”; //stores don’t as

first 6 elements of a in stack; &a = a

char *p = “don’t”; //p points to instructions

section where “don’t” is; &p!=p

4
a[2]; //gives ‘n’ as *(a+2); *a ⇔ a[0] p[2]; //gives ‘n’, same as *(p+2); *p ⇔

p[0]

5
a = “hello”; //gives an error; we can

change only element by element

p = “hello”; //p now points to place in

instruction section where “hello” is

6 a++ //gives an error p++ //shows on the next address

7 a[0] = ‘c’; // now we have “con’t” in a p[0] = ‘c’; //gives an error

8

char a[5] = “Welcome”; //gives an error

because Welcome size is > than 5

char *p = “Welcome”; //p now points to

place in instruction section where

“Welcome” is

Code: shows each of those properties

https://drive.google.com/file/d/1tYZuJV_9fgbbFxmt72UjtXGad0PKyVvD/view?usp=sharing

1D array and its length in the function

void reverseArray(int arr[], int n) {

int i;

for (i = 0; i < n/2; i++) {

int tmp = arr[i];

arr[i] = arr[n-i-1];

arr[n-i-1] = tmp;

}

} //Changes array in original space

int lengthOfArray(int arr[]) {

return

sizeof(arr)/sizeof(arr[0]);

} //returns 8/4 = 2

● Variables are always passed by

value to functions

● Arrays are always passed by

reference to functions
○ => Changing array in function changes it

in it’s original space

○ => don’t need to return array

● Can’t return array from function,

because it exists only until function

exist. Make sure to define all arrays

used from multiple functions globally

or in main function.

Multidimensional

arrays and functions

void printMatrix(int n, int m, double mat[n][m]) {

printf("Matrix is: \n");

for (int i = 0; i < n; i++) {

for (int j = 0; j < m; j++) {

printf("%f, ",

mat[i][j]);

}

printf("\n");

}

}
void changeToOne(double* mat, int n, int m)

int i, j;

for (i = 0; i < n; i++) {

for (j = 0; j < m; j++) {

*(mat + i * m + j)

= 1;

}

}

}

● Always passed by reference to

functions
○ => Changing multidimensional array in

function changes original matrix

○ => don’t need to return it

● Can’t access matrix created in

some function after function is

finished (don’t return it).

● Calls:
○ printMatrix(n, m, mat);

○ changeToOne((double*)mat, n, m);

○ Check Lab 5 code

Pointers to functions

● void printArray(int arr[], int len);

● void reverseArray(int arr[], int len);

● void readArray(int arr[], int len);

● int maxOfArray(int arr[], int len); // can’t be included in array of pointers to

function because it doesn’t have the same data type as the other functions

● void (*f[3])(int [], int) = {printArray, reverseArray, readArray};
○ f is name of array of pointers to functions and f has three elements

○ all functions have void return type and (int[], int) arguments types (in this case)

● (*f[2])(arr, 5); // calls reverseArray(arr, 5);
○ calls 2nd element of array f with arguments arr and 5

● int* f(); // function returning a pointer to an int

● int (*f)(); // pointer to function returning integer

Advanced pointers and order of operations

char ** cpp; //pointer to pointer to char

int (*arr)[13]; // pointer to array[13] of int

int *arr[13]; // array[13] of pointers to integer

void *fun(); // function returning pointer to void

void (*fun)(); // pointer to function returning void and without parameters

char*(*v[10])(); //array of 10 pointers to functions which return char pointer

void (*fun)(int); //pointer to a function that has int argument and returns nothing

● Type conversions:
○ Implicit (to bigger data types, int=>long, int => float, float => double, char => int,...)

○ Explicit with (cast) operator (e.g. (int)3.5; => 3, (float)0.333333333333; => 0.333333,...)

○ String to integer: atoi(“1234”); => 1234. String to float: atof(“12.34”); => 12.34

● Register variables:
○ Registers are located on CPU, the fastest memory, but very small

○ register int i = 10; // 10 is stored in registry; use this only if you will use i a lot in calculations

● int main(int argc, char* argv[]) - main can have those two parameter
○ argc is number of arguments and argv is array of strings with length argc; each string is

different argument; those two parameters are optional

● Generating random numbers:
○ import<time.h>

○ srand(time(NULL)); // uses time to generate random values

○ rand() % (100 - 50 + 1) + 50; // gives random numbers between 50 and 100

Preprocessor

● #include and #define are preprocessor statements

● #define SQUARE(x) ((x)*(x)) - macro definition

● Other such statements: #if, #elif, #endif, #ifndef, #ifdef (conditional inclusion)

● #undef (undefine a defined value)

● #pragma startup or #pragram exit (call a function before/after main function)

● During the preprocessing step of compiling those are executed/checked:
○ All constants defined by #define are substituted in code with the value

○ All libraries included by #include are connected to the main code

○ If conditional inclusion is used compiler checks if those are satisfied

● Very important in complex projects when same stuff may be defined in

multiple files or where different modules should execute for different cases

Handling characters and strings

● <ctype.h>
○ isdigit(‘0’);

○ isalpha(‘A’);

○ isalnum(‘A’);

○ isxdigit(‘A’);

○ islower(‘p’);

○ isupper(‘p’);

○ toupper(‘p’);

○ tolower(‘P’);

○ isspace(‘\n’);

○ iscntrl(‘\t’);

○ ispunct(‘:’);

○ isprint(‘$’);

○ isgraph(‘\n’);

● <string.h>
○ char str[40] = strcat(x, y); //concatenates x and y and stores

that string in str

○ char str[30] = strncat(x, y, 6); // concatenates x with first 6

characters of y and saves in str

○ strcmp(x, y); //compares lexically x and y

○ strncmp(x, y, 6); //compares first 6 characters from x and y

lexically (returns -1, 0, 1)

○ strchr(str, c); //returns pointer to first position of c in str

○ strcspn(s1, s2); //number of characters on the begining in s1

which are not in s2

○ strrchr(s1, c); //part of s1 which starts with c

○ strspn(s1, s2); //initial part of s1 containing only characters

from s2

Handling strings and memory

● <string.h>
○ strcpy(y, x); //copies from x to y

○ strncpy(y, x, 10); //copies first 10 chars from x to y

○ strstr(s1, s2); //first occurence of s2 in s1

○ strtok(s, “ “); //tokenize sentence s

○ memcpy(s1, s2, 5); // copies first 5B from s2 to s1

○ memmove(s, &s[5], 6); //first 5 chars moved to pos 6

○ memcmp(s1, s2, 4); //compares first 4 letters of s1

and s2 and returns -1, 0, 1

○ memchr(s, ‘a’, 2); //part of s which starts with ‘a’

○ memset(s, ‘b’, 3); //write ‘b’ to first 3 positions of s

○ strerror(1); //prints error which has code 1

○ strlen(str); //length of string, excluding ‘\0’

○ Some of these functions are not secure

● <stdlib.h>
○ double d = strtod(str, &strPtr);

//numerical part of str goes into

d and rest into strPtr

○ long x = strtol(str, &strPtr, 0); //

same for long

○ unsigned long int x = strtoul(str,

*strPtr, 0); // same for unsigned

long int

