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Structure

There are no classes in C, but structures and unions can group variables
struct course { char name [50]; struct course *requisites d; int id;} - defines
structure course which has a pointer to itself (self-referral)

struct course cProg = {*C and Systems”, NULL, 2107}, - defines cProg variable

cProg.name = “C Programming and Systems”; -changes name of cProg course

e Structures can used as argument or return type of function
o struct course rename(struct course cProg);

e Structures can be nested. Arrays of structures are possible:

o struct schedule {struct course cList[50]; int time[50]}; - creates structure schedule of 50 courses
and 50 time points when those courses are happening. Each course is above defined structure

e Pointer to structure: struct course *cProgPtr = & cProg;
o printf(“Course name is %s”, cProgPtr->name); - prints name of course

e Structure padding: adding empty space between structure elements to align
data in memory. Each element is read from memory in smallest number of 4B
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Typedef, union and enum

e typedef struct course cInfo; - defines name clInfo for structure course
o clnfo c; - creates variable ¢ of type cinfo, ie. of type struct course
o clnfo *p; - creates pointer to type cinfo, ie. to struct course.
o c.id =2207; p->id = 1076; - changes course id to 2207, then to 1076
e union grade {float mean; int max; int min;} - allocates space ONLY for the
one (biggest) variable, ie. only one variable can be used at each moment.
o union grade g; defines variable g of type union grade
o g.mean = 3.4, sets mean to 3.4; g.max = 5; forgets g.mean and sets max
e enum dept {CS = 10, Math = 30, Physics = 50} marks; defines variable
marks of type enum dept with three given values.
o enum bools {false, true} isCold; - defines boolean behaviour



Files manipulation (1)

FILE * file; - pointer to a file

file = fopen(“filename.txt”, “r’); - opens file for reading

fscanf(file, “%s”, s); - reads string from file and stores it into s

fclose(file); - closes file after reading (don’t forget)

To write into file open file for writing: file = fopen(*file.txt”, “w”); fprintf(file, “Hi");
To read/write you can also use: fgets/fputs, fgetc/fputc

If you try to write to non-existing file, it will be created; Otherwise, it is emptied.
To add data to existing file open it in append mode: file = fopen(“file.txt”, “a@”);
If you try to read from non-existing file or some other error happen when trying
to open file fopen() will return NULL.

To read/write/append binary file use: “rb”, “wb”, “ab” mode, respectively



Files manipulation (2)

fprintf(stderr, “Error in file opening”); - prints error message to screen
ferror(file); - returns non-zero value if error occured on stream file
feof(file); returns non-zero if the end of file is reached

if (file '= NULL) {read/write} - checks if file is actually opened
while(fgets(file, 100, s) != EOF) {...} - reads lines until end of file is reached
while(!feof(file)) {...} - does something until you didn’t come till the end of file
rewind(file); - resets your position to the beginning of file

fseek(file, 10, SEEK_SET); - sets position in file to 10, SEEK_SET is 0
ftell(file); - returns the current position in file

fwrite(ptr, size, len, file); - writes into file from array stored at ptr, size is the size
of each element in array and len is number of elements in that array
fread(ptr, size, len, file); - same as above, but reads from file into ptr array



Memory allocation

Functions are defined in <stdlib.h>

int * ptr = malloc (10 * sizeof(int)); - allocates space for 10 int in memory

int * ptr = calloc (10, sizeof(int)); - allocates space for 10 int in memory and
sets O into each of those 10 positions

free(ptr); - frees memory on which ptr shows, so that it can be used by others
realloc(ptr, 5 * sizeof(double)); - gets memory for 5 doubles and frees the rest
if (ptr I= NULL) {...} - only if ptr is not null memory is allocated for you
Memory allocation happens on Heap

After free(ptr);, you need to do ptr = NULL;, otherwise ptr shows on place
which is not yours anymore.

Memory allocated in function is lost once that function finishes.



