
Computer Systems & Low-

Level Programming

C: structures, files manipulation, 

memory allocation

Marija Stanojevic

Spring 2019



Structure

● There are no classes in C, but structures and unions can group variables

● struct course { char name [50]; struct course *requisites d; int id;} - defines 

structure course which has a pointer to itself (self-referral)

● struct course cProg = {“C and Systems”, NULL, 2107}; - defines cProg variable

● cProg.name = “C Programming and Systems”; -changes name of cProg course

● Structures can used as argument or return type of function
○ struct course rename(struct course cProg);

● Structures can be nested. Arrays of structures are possible:
○ struct schedule {struct course cList[50]; int time[50]}; - creates structure schedule of 50 courses 

and 50 time points when those courses are happening. Each course is above defined structure

● Pointer to structure: struct course *cProgPtr = & cProg;
○ printf(“Course name is %s”, cProgPtr->name); - prints name of course

● Structure padding: adding empty space between structure elements to align 

data in memory. Each element is read from memory in smallest number of 4B



Structure padding example



Typedef, union and enum

● typedef struct course cInfo; - defines name cInfo for structure course

○ cInfo c; - creates variable c of type cInfo, ie. of type struct course 

○ cInfo *p; - creates pointer to type cInfo, ie. to struct course.

○ c.id = 2207; p->id = 1076; - changes course id to 2207, then to 1076

● union grade {float mean; int max; int min;} - allocates space ONLY for the 

one (biggest) variable, ie. only one variable can be used at each moment. 

○ union grade g; defines variable g of type union grade

○ g.mean = 3.4; sets mean to 3.4; g.max = 5; forgets g.mean and sets max

● enum dept {CS = 10, Math = 30, Physics = 50} marks; defines variable 

marks of type enum dept with three given values. 

○ enum bools {false, true} isCold; - defines boolean behaviour



Files manipulation (1)

● FILE * file; - pointer to a file

● file = fopen(“filename.txt”, “r”); - opens file for reading

● fscanf(file, “%s”, s); - reads string from file and stores it into s

● fclose(file); - closes file after reading (don’t forget)

● To write into file open file for writing: file = fopen(“file.txt”, “w”); fprintf(file, “Hi”);

● To read/write you can also use: fgets/fputs, fgetc/fputc

● If you try to write to non-existing file, it will be created; Otherwise, it is emptied.

● To add data to existing file open it in append mode: file = fopen(“file.txt”, “a”);

● If you try to read from non-existing file or some other error happen when trying 

to open file fopen() will return NULL.

● To read/write/append binary file use: “rb”, “wb”, “ab” mode, respectively



Files manipulation (2)

● fprintf(stderr, “Error in file opening”); - prints error message to screen

● ferror(file); - returns non-zero value if error occured on stream file

● feof(file); returns non-zero if the end of file is reached

● if (file != NULL) {read/write} - checks if file is actually opened

● while(fgets(file, 100, s) != EOF) {...} - reads lines until end of file is reached

● while(!feof(file)) {...} - does something until you didn’t come till the end of file

● rewind(file); - resets your position to the beginning of file

● fseek(file, 10, SEEK_SET); - sets position in file to 10, SEEK_SET is 0

● ftell(file); - returns the current position in file

● fwrite(ptr, size, len, file); - writes into file from array stored at ptr, size is the size 

of each element in array and len is number of elements in that array

● fread(ptr, size, len, file); - same as above, but reads from file into ptr array



Memory allocation

● Functions are defined in <stdlib.h>

● int * ptr = malloc (10 * sizeof(int)); - allocates space for 10 int in memory

● int * ptr = calloc (10, sizeof(int)); - allocates space for 10 int in memory and 

sets 0 into each of those 10 positions

● free(ptr); - frees memory on which ptr shows, so that it can be used by others

● realloc(ptr, 5 * sizeof(double)); - gets memory for 5 doubles and frees the rest

● if (ptr != NULL) {...} - only if ptr is not null memory is allocated for you

● Memory allocation happens on Heap

● After free(ptr);, you need to do ptr = NULL;, otherwise ptr shows on place 

which is not yours anymore. 

● Memory allocated in function is lost once that function finishes.


