Computer Systems & Low-
Level Programming

C: structures, files manipulation,
memory allocation

Marija Stanojevic
Spring 2019



Structure

There are no classes in C, but structures and unions can group variables
struct course { char name [50]; struct course *requisites d; int id;} - defines
structure course which has a pointer to itself (self-referral)

struct course cProg = {*C and Systems”, NULL, 2107}, - defines cProg variable

cProg.name = “C Programming and Systems”; -changes name of cProg course

e Structures can used as argument or return type of function
o struct course rename(struct course cProg);

e Structures can be nested. Arrays of structures are possible:

o struct schedule {struct course cList[50]; int time[50]}; - creates structure schedule of 50 courses
and 50 time points when those courses are happening. Each course is above defined structure

e Pointer to structure: struct course *cProgPtr = & cProg;
o printf(“Course name is %s”, cProgPtr->name); - prints name of course

e Structure padding: adding empty space between structure elements to align
data in memory. Each element is read from memory in smallest number of 4B



Structure padding example

Member Name

Data

Address

idl id2 name c percentage

50.5

1297339368 to
1297339871

(bytes)

1297339856 to 1297339860 to lii;iizzzz;ﬂ
1297339859 1297339863 2 -
em)
(4 bytes (4 bytes
ytes) ytes) | e

1297339865
{1 byte) Member Name

1297339864

[1 bvte} Data

Address

id1 name id2 c percentage
1 2 2 percentage
.I | \ T 'I
\ | J
Fi
1297335824 to 1297339829 129733983210 1297339837 1297333840
to to
1297339827 e 1297339835 to T
4 bytes 4 bytes
(4 bytes) (3 empty (4 bytes) 1297339839 (4 pytes)
bytes) (2 empty
bytes)
W L
1297335828 1297333836
(1byte)

(1 byte)




Typedef, union and enum

e typedef struct course cInfo; - defines name clInfo for structure course
o clnfo c; - creates variable ¢ of type cinfo, ie. of type struct course
o clnfo *p; - creates pointer to type cinfo, ie. to struct course.
o c.id =2207; p->id = 1076; - changes course id to 2207, then to 1076
e union grade {float mean; int max; int min;} - allocates space ONLY for the
one (biggest) variable, ie. only one variable can be used at each moment.
o union grade g; defines variable g of type union grade
o g.mean = 3.4, sets mean to 3.4; g.max = 5; forgets g.mean and sets max
e enum dept {CS = 10, Math = 30, Physics = 50} marks; defines variable
marks of type enum dept with three given values.
o enum bools {false, true} isCold; - defines boolean behaviour



Files manipulation (1)

FILE * file; - pointer to a file

file = fopen(“filename.txt”, “r’); - opens file for reading

fscanf(file, “%s”, s); - reads string from file and stores it into s

fclose(file); - closes file after reading (don’t forget)

To write into file open file for writing: file = fopen(*file.txt”, “w”); fprintf(file, “Hi");
To read/write you can also use: fgets/fputs, fgetc/fputc

If you try to write to non-existing file, it will be created; Otherwise, it is emptied.
To add data to existing file open it in append mode: file = fopen(“file.txt”, “a@”);
If you try to read from non-existing file or some other error happen when trying
to open file fopen() will return NULL.

To read/write/append binary file use: “rb”, “wb”, “ab” mode, respectively



Files manipulation (2)

fprintf(stderr, “Error in file opening”); - prints error message to screen
ferror(file); - returns non-zero value if error occured on stream file
feof(file); returns non-zero if the end of file is reached

if (file '= NULL) {read/write} - checks if file is actually opened
while(fgets(file, 100, s) != EOF) {...} - reads lines until end of file is reached
while(!feof(file)) {...} - does something until you didn’t come till the end of file
rewind(file); - resets your position to the beginning of file

fseek(file, 10, SEEK_SET); - sets position in file to 10, SEEK_SET is 0
ftell(file); - returns the current position in file

fwrite(ptr, size, len, file); - writes into file from array stored at ptr, size is the size
of each element in array and len is number of elements in that array
fread(ptr, size, len, file); - same as above, but reads from file into ptr array



Memory allocation

Functions are defined in <stdlib.h>

int * ptr = malloc (10 * sizeof(int)); - allocates space for 10 int in memory

int * ptr = calloc (10, sizeof(int)); - allocates space for 10 int in memory and
sets O into each of those 10 positions

free(ptr); - frees memory on which ptr shows, so that it can be used by others
realloc(ptr, 5 * sizeof(double)); - gets memory for 5 doubles and frees the rest
if (ptr I= NULL) {...} - only if ptr is not null memory is allocated for you
Memory allocation happens on Heap

After free(ptr);, you need to do ptr = NULL;, otherwise ptr shows on place
which is not yours anymore.

Memory allocated in function is lost once that function finishes.



